
ManuScript Language Guide
for Sibelius Ultimate Software

Legal Notices

© 2022 Avid Technology, Inc., (“Avid”), all rights reserved. This guide may not be duplicated in whole or in part without the written consent of Avid.

For a current and complete list of Avid trademarks visit: www.avid.com/legal/trademarks-and-other-notices

Bonjour, the Bonjour logo, and the Bonjour symbol are trademarks of Apple Computer, Inc.

Thunderbolt and the Thunderbolt logo are trademarks of Intel Corporation in the U.S. and/or other countries.

This product may be protected by one or more U.S. and non-U.S. patents. Details are available at www.avid.com/patents.

Product features, specifications, system requirements, and availability are subject to change without notice.

Guide Part Number 9329-66445-00 REV A 12/22

https://www.avid.com/legal/trademarks-and-other-notices
https://www.avid.com/patents

Introduction . 1

Rationale. 1

Technical Support . 2

System Requirements and Compatibility Information . 2

Conventions Used in Sibelius Documentation . 2

Resources. 3

Sibelius ManuScript Language Tutorial . 4

Edit Plug-ins . 4

Editing the Code . 7

Loops . 9

Objects . 11

Representation of a Score . 12

The “for each” Loop . 14

Indirection, Sparse Arrays, and User Properties . 15

Dialog Editor. 19

Set Creation Order . 21

Debugging Plug-ins . 24

Storing and Retrieving Preferences . 25

Reference . 30

Syntax . 30

Expressions . 31

Operators . 33

Object Reference . 34

Hierarchy of Objects . 34

All Objects . 35

Accessibility . 36

AnnotationItem . 36

Bar. 37

Barline. 41

Barlines. 42

BarObject . 42

BarRest . 45

Bracket . 45

Brackets and Braces . 45

Clef . 46

Comment . 46

ComponentList . 47

Component . 47
Contents
ManuScript Language Guide iii

DateTime . 47

Dictionary . 48

DocumentSetup . 48

DynamicPartCollection. 50

DynamicPart . 50

EngravingRules . 51

File . 53

Folder . 53

GuitarFrame . 54

GuitarScaleDiagram . 56

HitPointList . 57

HitPoint . 57

InstrumentChange . 57

InstrumentTypeList. 58

InstrumentType. 58

KeySignature . 59

Line . 60

LyricItem . 60

NoteRest . 61

Note . 63

NoteSpacingRule . 65

PageNumberChange. 66

PluginList . 67

Plugin . 67

RehearsalMark . 67

Score . 68

Selection . 73

Sibelius . 76

SoundInfo . 83

SparseArray . 83

SpecialBarline . 84

Staff . 84

Syllabifier . 87

SymbolItem and SystemSymbolItem . 88

SystemObjectPositions . 88

SystemStaff, Staff, Selection, Bar and, all BarObject-derived Objects . 88

SystemStaff. 89

Text and SystemTextItem . 89

TimeSignature. 90

TreeNode . 90

Tuplet . 90

Utils . 91

VersionHistory . 94

Version . 94

VersionComment . 95
ManuScript Language Guide iv

Command IDs . 96

Global Constants . 105

Global Constants . 105
ManuScript Language Guide v

Introduction

ManuScript is a simple, music-based programming language used to write plug-ins for Sibelius Ultimate. ManuScript is based on
Simkin, an embedded scripting language developed by Simon Whiteside, and has been extended by him and the rest of the Sibelius
team ever since. (Simkin is a spooky pet name for Simon sometimes found in Victorian novels.) For more information on Simkin,
and additional help on the language and syntax, visit the Simkin website at www.simkin.co.uk.

Rationale
Providing a plug-in language for Sibelius Ultimate addresses several different issues:

• Music notation is complex and infinitely extensible, so some users will sometimes want to add to a music notation program to
expand its possibilities with these new extensions.

• It is useful to allow frequently repeated operations (for example, opening a MIDI file and saving it as a score) to be automated,
using a system of scripts or macros.

Certain more complex techniques used in composing or arranging music can be partly automated, but there are too many to include
as standard features in Sibelius.

There were several conditions that we wanted to meet in deciding what language to use:

• The language had to be simple, as we want normal users (not just seasoned programmers) to be able to use it.

• We wanted plug-ins to be usable on any computer, as the use of computers running both Windows and macOS is widespread in
the music world.

• We wanted the tools to program in the language to be supplied with Sibelius.

• We wanted musical concepts (pitch, notes, bars) to be easily expressed in the language.

• We wanted programs to be able to talk to Sibelius easily (to insert and retrieve information from scores).

• We wanted simple dialog boxes and other user interface elements to be easily programmed.

C/C++, the world’s “standard” programming language(s), were unsuitable as they are not easy for the non-specialist to use, they
would need a separate compiler, and you would have to recompile for each different platform you wanted to support (and thus cre-
ate multiple versions of each plug-in).

The language Java was more promising as it is relatively simple and can run on any platform without recompilation. However, we
would still need to supply a compiler for people to use, and we could not express musical concepts in Java as directly as we could
with a new language.

So we decided to create our own language that is interpreted so it can run on different platforms, integrated into Sibelius without
any need for separate tools, and can be extended with new musical concepts at any time.

The ManuScript language that resulted is very simple. The syntax and many of the concepts will be familiar to programmers of
C/C++ or Java. Built into the language are musical concepts (Score, Staff, Bar, Clef, NoteRest) that are instantly comprehensible.

Throughout this guide, “Sibelius” refers to Sibelius Ultimate for the sake of readability.
 Introduction 1

http://www.simkin.co.uk

Technical Support
Since the ManuScript language is more the province of our programmers than our technical support team (who are not, in the main, pro-
grammers), we can’t provide detailed technical help on it, any more than Oracle will help you with Java programming. This document
and the sample plug-ins should give you a good idea of how to do some simple programming fairly quickly.

We would welcome any useful plug-ins you write – please contact us at www.sibelius.com/plugins and we may put them on our web
site; if we want to distribute the plug-in with Sibelius itself, we’ll pay you for it.

Mailing list for plug-in developers

There is a growing community of plug-in developers working with ManuScript, and they can be an invaluable source of help when writ-
ing new plug-ins. To subscribe, go to http://avid-listsrv1.avid.com/mailman/listinfo/plugin-dev.

System Requirements and Compatibility Information
Avid can only assure compatibility and provide support for hardware and software it has tested and approved.

For complete system requirements and a list of qualified computers, operating systems, hard drives, and third-party devices, visit:

www.avid.com/compatibility

Conventions Used in Sibelius Documentation
Sibelius documentation uses the following conventions to indicate menu choices, keyboard commands, and mouse commands:
:

The names of Commands, Options, and Settings that appear on-screen are in a different font.

The following symbols are used to highlight important information:

Convention Action

File > Save Choose Save from the File tab

Control+N Hold down the Control key and press the N key

Control-click Hold down the Control key and click the mouse but-
ton

Right-click Click with the right mouse button

User Tips are helpful hints for getting the most from your Sibelius system.

Important Notices include information that could affect data or the performance of your Sibelius system.

Shortcuts show you useful keyboard or mouse shortcuts.

Cross References point to related sections in this guide and other Avid documentation.
 Introduction 2

https://www.avid.com/compatibility

How to Use this PDF Guide
This PDF provides the following useful features:

• The Bookmarks on the left serve as a continuously visible table of contents. Click on a subject heading to jump to that page.

• Click a + symbol to expand that heading to show subheadings. Click the – symbol to collapse a subheading.

• The Table of Contents provides active links to their pages. Select the hand cursor, allow it to hover over the heading until it turns
into a finger. Then click to locate to that subject and page.

• All cross references in blue are active links. Click to follow the reference.

• Select Find from the Edit menu to search for a subject.

• When viewing this PDF on an iPad, it is recommended that you open the file using iBooks to take advantage of active links within
the document. When viewing the PDF in Safari, touch the screen, then touch Open in “iBooks”.

Resources
The Avid website (www.avid.com) is your best online source for information to help you get the most out of Sibelius.

Account Activation and Product Registration
Activate your product to access downloads in your Avid account (or quickly create an account if you do not have one). Register your
purchase online, download software, updates, documentation, and other resources.

www.avid.com/account

Support and Downloads
Contact Avid Customer Success (technical support), download software updates and the latest online manuals, browse the Compatibil-
ity documents for system requirements, search the online Knowledge Base or join the worldwide Avid user community on the User Con-
ference.

www.avid.com/support

Training and Education
Study on your own using courses available online, find out how you can learn in a classroom setting at an Avid-certified training center,
or view video tutorials and webinars.

www.avid.com/education

Products and Developers
Learn about Avid products, download demo software, or learn about our Development Partners and their plug-ins, applications, and
hardware.

www.avid.com/products
 Introduction 3

https://www.avid.com
https://www.avid.com/account
https://www.avid.com/support
https://www.avid.com/education
https://www.avid.com/products

Sibelius ManuScript Language Tutorial

Edit Plug-ins

A Simple Plug-in
Let’s start a simple plug-in. You are assumed to have some basic experience of programming (such as BASIC or C), so you’re al-
ready familiar with ideas like variables, loops, and so on.

To create a new Sibelius plug-in:

1 Start Sibelius and open or create a new score.

2 Choose File > Plug-ins > Edit Plug-ins.

Selecting Edit Plug-ins in the File tab
 Sibelius ManuScript Language Tutorial 4

3 The following dialog appears:

4 Click New.

5 You are asked to type the internal name of your plug-in (used as the plug-in’s filename), the name that should appear on the menu and
the name of the category in which the plug-in should appear, which will determine which ribbon tab it appears on.

6 Type Test as the internal name, Test plug-in as the menu name and Tests as the category name, then click OK.

7 You’ll see Test (user copy) added to the list in the Edit Plug-ins dialog under a new Tests branch of the tree view. Click Close. This
shows the folder in which the plug-in is located (Tests, which Sibelius has created for you), the filename of the plug-in (minus the
standard .plg file extension), and (user copy) tells you that this plug-in is located in your user application data folder, not the Sibelius
program folder or application package itself.

8 If you look in the Home > Plug-ins gallery again you’ll see a Tests category, with a Test plug-in underneath it.

Edit Plug-ins dialog

New ManuScript Plug-in dialog
 Sibelius ManuScript Language Tutorial 5

9 Choose Home > Plug-ins > Tests > Test and the plug-in will run. You may first be prompted that you cannot undo plug-ins, in which
case click Yes to continue (and you may wish to switch on the Don’t say this again option so that you’re not bothered by this warning
in future.) What does our new Test plug-in do? It just pops up a dialog which says Test (whenever you start a new plug-in, Sibelius
automatically generates in a one-line program to do this). You’ll also notice a window appear with a button that says Stop Plug-in,
which appears whenever you run any plug-in, and which can be useful if you need to get out of a plug-in you’re working on that is
(say) trapped in an infinite loop.

10 Click OK on the dialog and the plug-in stops.

Three Types of Information
Let’s look at what’s in the plug-in so far. Choose File > Plug-ins > Edit Plug-ins again, then select Tests/Test (user copy) from the list
and click Edit (or simply double-click the plug-in’s name to edit it). You’ll see a dialog showing the three types of information that can
make up a plug-in:

Methods Similar to procedures, functions, or routines in some other languages.

Dialogs The layout of any special dialogs you design for your plug-in.

Data Variables whose value is remembered between running the plug-in. You can only store strings in these variables, so they’re useful
for things like user-visible strings that can be displayed when the plug-in runs. For a more sophisticated approach to global variables,
ManuScript provides custom user properties for all objects—see Edit Plug-ins.

Methods

The actual program consists of the methods. As you can see, plug-ins normally have at least two methods, which are created automat-
ically for you when you create a new plug-in:

Initialize

This method is called automatically whenever you start up Sibelius. Normally it does nothing more than add the name of the plug-in to
the Plug-ins menu, although if you look at some of the supplied plug-ins you’ll notice that it’s sometimes also used to set default values
for data variables.

Example: Test plug-in
 Sibelius ManuScript Language Tutorial 6

Sibelius 2020.9 (and later) adds new functionality that lets ManuScript treat a single character as a string, rather than a number, and pro-
vides support for quarter-tone accidentals and pitches. Include the following code example with the Initialize() method to enable
this functionality:

if (Sibelius.ProgramVersion > 20200600) {
 SetInterpreterOption(TreatSingleCharacterAsString);
 SetInterpreterOption(SupportHalfSemitonePitchValues);
}

Plug-ins that use this new functionality are not supported with earlier versions of Sibelius.

Run

This is called when you run the plug-in, you’ll be startled to hear (it’s like main() in C/C++ and Java). In other words, when you
choose Home > Plug-ins > Tests > Test, the plug-in’s Run method is called. If you write any other methods, you have to call them from
the Run method—otherwise how can they ever do anything?

Click on Run, then click Edit (or you can just double-click Run to edit it). This shows a dialog where you can edit the Run method:

In the top field you can edit the name; in the next field you can edit the parameters (the variables where values passed to the method are
stored); and below is the code itself:

Sibelius.MessageBox("Test");

This calls a method MessageBox which pops up the dialog box that says Test when you run the plug-in. Notice that the method name
is followed by a list of parameters in parentheses. In this case there’s only one parameter: because it is a string (that is, text) it is in double
quotes. Notice also that the statement ends in a semicolon, as in C/C++ and Java. If you forget to type a semicolon, you’ll get an error
when the plug-in runs.

What is the role of the word Sibelius in Sibelius.MessageBox? In fact it’s a variable representing the Sibelius program; the state-
ment is telling Sibelius to pop up the message box (C++ and Java programmers will recognize that this variable refers to an “object”).
If this hurts your brain, we’ll go into it later.

Editing the Code
Now try amending the code slightly. You can edit the code just like in a word processor, using the mouse and arrow keys, and you can
also use Command+X/C/V (Mac) or Control+X/C/V (Windows) for cut, copy and paste respectively. If you right-click, you get a menu
with these basic editing operations on them as well.

Change the code to this:
x = 1;

x = x + 1;
Sibelius.MessageBox("1 + 1 = " & x);

ManuScript Method dialog
 Sibelius ManuScript Language Tutorial 7

You can check this makes sense (or, at least, some kind of sense) by clicking the Check Syntax button. If there are any blatant mistakes
(e.g. missing semicolons) you will be notified where they are.

Then close the dialogs by clicking OK, OK again then Close. Run your amended plug-in from the Plug-ins menu and a message box
with the answer 1 + 1 = 2 should appear.

How does it work? The first two lines should be obvious. The last line uses & to stick two strings together. You cannot use + as this works
only for numbers (if you try it in the example above, you will get an interesting answer!).

One pitfall: try changing the second line to:
x += 1;

Then click Check syntax. You will encounter an error: this syntax (and the syntax x++) is allowed in various languages but not in
ManuScript. You have to do x = x+1;.

Where Plug-ins are Stored
Plug-ins supplied with Sibelius are stored in folders buried deep within the Sibelius program folder on Windows, and inside the appli-
cation package (or “bundle”) on Mac. It is not intended that end users should add extra plug-ins to these locations themselves, as we have
provided a per-user location for plug-ins to be installed instead. When you create a new plug-in or edit an existing one, the new or mod-
ified plug-in will be saved into the per-user location (rather than modifying or adding to the plug-ins in the program folder or bundle):

• On Windows, additional plug-ins are stored at C:\Users\<username>\AppData\Roaming\Avid\Sibelius\Plugins.

• On Mac, additional plug-ins are stored in subfolders at /Users/<username>/Library/Application Support/Avid/Sibelius/Plugins.

This is worth knowing if you want to give a plug-in to someone else. The plug-ins appear in subfolders which correspond to the cate-
gories in which they appear in the various Plug-ins galleries. The filename of the plug-in itself is the plug-in’s internal name plus the
.plg extension, such as Test.plg.

(Sibelius includes an automatic plug-in installer, which you can access via File > Plug-ins > Install Plug-ins. This makes it easy to
download and install plug-ins from the Avid website.)

Line Breaks and Comments
As with C/C++ and Java, you can put new lines wherever you like (except in the middle of words), as long as you remember to put a
semicolon after every statement. You can put several statements on one line, or put one statement on several lines.

You can add comments to your program, again like C/C++ and Java. Anything after // is ignored to the end of the line. Anything be-
tween /* and */ is ignored, whether just part of a line or several lines:

// comment lasts to the end of the line
/* you can put
several lines of comments here
*/

For instance:
Sibelius.MessageBox("Hi!"); // print the active score

or:
Sibelius /* this contains the application */ .MessageBox("Hi!");

Variables
x in the Test plug-in is a variable. In ManuScript a variable can be any sequence of letters, digits or _ (underscore), as long as it does
not start with a digit.

A variable can contain an integer (whole number), a floating point number, a string (text) or an object (such as a note)—more about ob-
jects in a moment. Unlike most languages, in ManuScript a variable can contain any type of data—you do not have to declare what type
you want. Thus you can store a number in a variable, then store some text instead, then an object.
 Sibelius ManuScript Language Tutorial 8

Try this:
x = 56; x = x+1;
Sibelius.MessageBox(x); // prints '57' in a dialog box
x = "now this is text"; // the number it held is lost
Sibelius.MessageBox(x); // prints 'now this is text' in a dialog
x = Sibelius.ActiveScore; // now it contains a score
Sibelius.MessageBox(x); // prints nothing in a dialog

Variables that are declared within a ManuScript method are local to that method; in other words, they cannot be used by other methods
in the same plug-in. Global Data variables defined using the plug-in editor can be accessed by all methods in the plug-in, and their values
are preserved over successive uses of the plug-in.

A quick aside about strings in ManuScript is in order at this point. Like many programming languages, ManuScript strings uses the
back-slash \ as an “escape character” to represent certain special things. To include a single quote character in your strings, use \', and
to include a new line you should use \n. Because of this, to include the backslash itself in a ManuScript string one has to write \\.

Converting Between Numbers, Text, and Objects
Notice that the method MessageBox is expecting to be sent some text to display. If you give it a number instead (as in the first call to
MessageBox above) the number is converted to text. If you give it an object (such as a score), no text is produced.

Similarly, if a calculation is expecting a number but is given some text, the text will be converted to a number:
x = 1 + "1"; // the + means numbers are expected

Sibelius.MessageBox(x); // displays '2'

If the text doesn’t start with a number (or if the variable contains an object instead of text), it is treated as 0:
x = 1 + "fred";

Sibelius.MessageBox(x); // displays ‘1’

Loops

“for” and “while”
ManuScript has a while loop which repeatedly executes a block of code until a certain expression becomes True. Create a new plug-in
called Potato. This is going to amuse one and all by writing the words of the well-known song “1 potato, 2 potato, 3 potato, 4.” Type
in the following for the Run method of the new plug-in:

x = 1;
while (x<5)
{

text = x & " potato,";
Sibelius.MessageBox(text);
x = x+1;

}

Run it. It should display “1 potato,” “2 potato,” “3 potato,” “4 potato,” which is a start, though annoyingly you have to click OK after
each message.

The while statement is followed by a condition in () parentheses, then a block of statements in { } braces (you don’t need a semi-
colon after the final } brace). While the condition is true, the block is executed. Unlike some other languages, the braces are compulsory
(you can’t omit them if they only contain one statement). Moreover, each block must contain at least one statement.

In this example you can see that we are testing the value of x at the start of the loop, and increasing the value at the end. This common
construct could be expressed more concisely in ManuScript by using a for loop. The above example could also be written as follows:

for x = 1 to 5
{

text = x & " potato,";
Sibelius.MessageBox(text);

}

 Sibelius ManuScript Language Tutorial 9

Here, the variable x is stepped from the first value (1) up to the end value (5), stopping one step before the final value. By default, the
“step” used is 1, but we could have used (say) 2 by using the syntax for x = 1 to 5 step 2, which would then print only “1 potato”
and “3 potato”!

Notice the use of & to add strings. Because a string is expected on either side, the value of x is turned into a string.

Notice also we’ve used the Tab key to indent the statements inside the loop. This is a good habit to get into as it makes the structure
clearer. If you have loops inside loops you should indent the inner loops even more.

The if statement
Now we can add an if statement so that the last phrase is just “4,” not “4 potato”:

x = 1;
while (x<5)
{

if(x=4)
{

text = x & ".";
}
else
{

text = x & " potato,";
}
Sibelius.MessageBox(text);
x = x+1;

}

The rule for if takes the form if (condition) {statements}. You can also optionally add else {statements}, which is ex-
ecuted if the condition is false. As with while, the parentheses and braces are compulsory, though you can make the program shorter
by putting braces on the same line as other statements:

x = 1;
while (x<5)
{

if(x=4) {
text = x & ".";

} else {
text = x & " potato,";

}
Sibelius.MessageBox(text);
x = x+1;

}

The position of braces is entirely a matter of taste.

Now let’s make this plug-in really cool. We can build up the four messages in a variable called text, and only display it at the end, saving
valuable wear on your mouse button. We can also switch round the if and else blocks to show off the use of not. Finally, we return to
the for syntax we looked at earlier.

text = ""; // start with no text
for x = 1 to 5
{

if (not(x=4)) {
text = text & x & " potato, "; // add some text

} else {
text = text & x & "."; // add no. 4

}
}
Sibelius.MessageBox(text); // finally display it
 Sibelius ManuScript Language Tutorial 10

Arithmetic
Here is a complete list of the available arithmetic operators in ManuScript:

ManuScript evaluates operators strictly from left-to-right, unlike many other languages; so 2+3*4 evaluates to 20, not 14 as you might
expect. To get the answer 14, you’d have to write 2+(3*4).

ManuScript supports both integers and floating point numbers. Use at least one floating point value in any arithmetic operation that
might result in a floating point number, otherwise the result is rounded to the nearest integer (unless you are using literal strings). For
instance, when calculating division using only integer values, the result is truncated; for example, the result of 3/2 is 1. However, using
at least one floating point value in the calculation results in a floating point number (this is true if any or all of the values are a floating
point number); for example, the result of 3.0/2 is 1.5.

Conversion from floating point numbers to integers can be achieved with the RoundUp(expr), RoundDown(expr), and Round(expr)
functions, which can be applied to any expression.

Objects
Now we come to the neatest aspect of object-oriented languages like ManuScript, C++ or Java, which sets them apart from traditional
languages like BASIC, Fortran and C. Variables in traditional languages can hold only certain types of data: integers, floating point
numbers, strings and so on. Each type of data has particular operations you can do to it: numbers can be multiplied and divided, for in-
stance; strings can be added together, converted to and from numbers, searched for in other strings, and so on. But if your program deals
with more complex types of data, such as dates (which in principle you could compare using =, < and >, convert to and from strings, and
even subtract) you are left to fend for yourself.

Object-oriented languages can deal with more complex types of data directly. Thus in the ManuScript language you can set a variable,
let’s say thischord, to be a chord in your score, and (say) add more notes to it:

thischord.AddNote(60); // adds middle C (note no. 60)
thischord.AddNote(64); // adds E (note no. 64)

If this seems magic, it’s just analogous to the kind of things you can do to strings in BASIC, where there are very special operations
which apply to text only:

A$ = "1"
A$ = A$ + " potato, ": REM add strings
X = ASC(A$): REM get first letter code

In ManuScript you can set a variable to be a chord, a note in a chord, a bar, a staff or even a whole score, and do things to it. Why would
you possibly want to set a variable to be a whole score? So you can save it or add an instrument to it for instance.

a + b add

a – b subtract

a * b multiply

a / b divide

a % b remainder

–a negate

a) evaluate first
 Sibelius ManuScript Language Tutorial 11

Objects in Action
We’ll have a look at how music is represented in ManuScript in a moment, but for a little taster, let’s plunge straight in and adapt Potato
to create a score:

x = 1;
text = ""; // start with no text
while (x<5)
{

if (not(x=4)) {
text = text & x & " potato, "; // add some text

} else {
text = text & x & "."; // add no. 4

}
x = x+1;

}
Sibelius.New(); // create a new score
newscore = Sibelius.ActiveScore; // put it in a variable
newscore.CreateInstrument("Piano");
staff = newscore.NthStaff(1); // get top staff
bar = staff.NthBar(1); // get bar 1 of this staff
bar.AddText(0,text,"Technique"); // use Technique text style

This creates a score with a Piano, and types our potato text in bar 1 as Technique text.

The code uses the period (.) several times, always in the form variable.variable or variable.method(). This shows that the
variable before the period has to contain an object.

If there’s a variable name after the period, we’re getting one of the object’s sub-variables (called “fields” or “member variables” in some
languages). For instance, if n is a variable containing a note, then n.Pitch is a number representing its MIDI pitch (60 for middle C), and
n.Name is a string describing its pitch (“C4” for middle C). The variables available for each type of object are listed later.

If there’s a method name after the period (followed by () parentheses), one of the methods allowed for this type of object is called. Typ-
ically a method called in this way will either change the object or return a value. For instance, if s is a variable containing a score, then
s.CreateInstrument("Flute") adds a flute (changing the score), but s.NthStaff(1) returns a value, namely an object con-
taining the first staff.

Let’s look at the new code in detail. There is a pre-defined variable called Sibelius, which contains an object representing the Sibelius
program itself. We’ve already seen the method Sibelius.MessageBox(). The method call Sibelius.New() tells Sibelius to cre-
ate a new score. Now we want to do something to this score, so we have to put it in a variable.

Fortunately, when you create a new score it becomes active (i.e. its title bar highlights and any other scores become inactive), so we can
just ask Sibelius for the active score and put it in a variable:

newscore = Sibelius.ActiveScore

Then we can tell the score to create a Piano: newscore.CreateInstrument("Piano"). But to add some text to the score you
have to understand how the layout is represented.

Representation of a Score
A score is treated as a hierarchy: each score contains 0 or more staves; each staff contains bars (though every staff contains the same
number of bars); and each bar contains “bar objects.” Clefs, text and chords are all different types of bar objects.

To add a bar object (i.e. an object which belongs to a bar), such as some text, to a score:

1 Specify which staff you want (and put it in a variable): staff = newscore.NthStaff(1).

2 Specify which bar in that staff you want (and put it in a variable): bar = staff.NthBar(1); finally you tell the bar to add the
text: bar.AddText(0,text,"Technique").

3 Specify the name (or index number – see Text styles on page 141) of the text style to use (and it has to be a staff text style, because
we’re adding the text to a staff).
 Sibelius ManuScript Language Tutorial 12

Notice that bars and staves are numbered from 1 upwards; in the case of bars, this is irrespective of any bar number changes that are in
the score, so the numbering is always unambiguous. In the case of staves, the top staff is no.1, and all staves are counted, even if they’re
hidden. Thus a particular staff has the same number wherever it appears in the score.

The AddText method for bars is documented later, but the first parameter it takes is a rhythmic position in the bar. Each note in a bar
has a rhythmic position that indicates where it is (at the start, one quarter after the start, etc.), but the same is true for all other objects
in bars. This shows where the object is attached to, which in the case of Technique text is also where the left hand side of the text goes.
Thus to put our text at the start of the bar, we used the value 0. To put the text a quarter note after the start of the bar, use 256 (the units
are 1024th notes, so a quarter is 256 units):

bar.AddText(256,text,"Technique");

To avoid having to use obscure numbers like 256 in your program, there are predefined variables representing different note values
(which are listed later), so you could write:

bar.AddText(Quarter,text,"Technique");

or to be quaint you could use the British equivalent:
bar.AddText(Crotchet,text,"Technique");

For a dotted quarter, instead of using 384 you can use another predefined variable:
bar.AddText(DottedQuarter,text,"Technique");

or add two variables:
bar.AddText(Quarter+Eighth,text,"Technique");

This is much clearer than using numbers.

The System Staff
As you know from using Sibelius, some objects don’t apply to a single staff but to all staves. These include titles, tempo text, rehearsal
marks and special barlines; you can tell they apply to all staves because (for instance) they get shown in all the instrumental parts.

All these objects are actually stored in a hidden staff, called the system staff. You can think of it as an invisible staff which is always
above the other staves in a system. The system staff is divided into bars in the same way as the normal staves. So to add the title “Potato”
to our score we’d need the following code in our plug-in:

sys = newscore.SystemStaff; // system staff is a variable
bar = sys.NthBar(1);
bar.AddText(0,"POTATO SONG","Subtitle");

As you can see, SystemStaff is a variable you can get directly from the score. Remember that you have to use a system text style (here
Subtitle is used) when putting text in a bar in the system staff. A staff text style like Technique won’t work. Also, you have to specify
a bar and position in the bar; this may seem slightly superfluous for text centered on the page as titles are (though in reality even this
kind of page-aligned text is always attached to a bar), but for Tempo and Metronome mark text they are obviously required.

Representation of Notes, Rests, Chords, and Other Musical Items
Sibelius represents rests, notes and chords in a consistent way. A rest has no noteheads, a note has 1 notehead and a chord has 2 or more
noteheads. This introduces an extra hierarchy: most of the squiggles you see in a score are actually a special type of Bar object that can
contain even smaller things (namely, noteheads). There’s no overall name for something which can be a rest, note or chord, so we’ve
invented the pretty name NoteRest. A NoteRest with 0, 1 or 2 noteheads is what you normally call a rest, a note or a chord, respec-
tively.

If n is a variable containing a NoteRest, there is a variable n.NoteCount which contains the number of notes, and n.Duration
which is the note-value in 1/256ths of a quarter. You can also get n.Highest and n.Lowest which contain the highest and lowest
notes (assuming n.NoteCount isn’t 0). If you set lownote = n.Lowest, you can then find out things about the lowest note, such
as lownote.Pitch (a number) and lownote.Name (a string). Complete details about all these methods and variables may be found
in Reference.

Other musical objects, such as clefs, lines, lyrics and key signatures have corresponding objects in ManuScript, which again have var-
ious variables and methods available. For example, if you have a Line variable ln, then ln.EndPosition gives the rhythmic posi-
tion at which the line ends.
 Sibelius ManuScript Language Tutorial 13

The “for each” Loop
It’s a common requirement for a loop to do some operation to every staff in a score, or every bar in a staff, or every Bar object in a bar,
or every note in a NoteRest. There are other more complex requirements which are still common, such as doing an operation to every
Bar object in a score in chronological order, or to every Bar object in a multiple selection. ManuScript has a for each loop that can
achieve each of these in a single statement.

The simplest form of for each is like this:
thisscore = Sibelius.ActiveScore;
for each s in thisscore // sets s to each staff in turn
{ // ...do something with s
}

Here, since thisscore is a variable containing a score, the variable s is set to be each staff in thisscore in turn. This is because
staves are the type of object at the next hierarchical level of objects (see Hierarchy of Objects).

For each staff in the score, the statements in {} braces are executed.

Score objects contain staves, as we have seen, but they can also contain a Selection object, e.g. if the user has selected a passage
of music before running the plug-in. The Selection object is a special case: it is never returned by a for each loop, because there
is only a single Selection object; if you use the Selection object in a for each loop, by default it will return Bar objects (not
Staves, Bars or anything else!).

Let’s take another example, this time for notes in a NoteRest:
noterest = bar.NthBarObject(1);
for each n in noterest // sets n to each note in turn
{

Sibelius.MessageBox("Pitch is " & n.Name);
}

n is set to each note of the chord in turn, and its note name is displayed. This works because Notes are the next object down the hierarchy
after NoteRests. If the NoteRest is, in fact, a rest (rather than a note or chord), the loop will never be executed—you don’t have to check
this separately.

The same form of loop will get the bars from a staff or system staff, and the Bar objects from a bar. These loops are often nested, so
you can, for instance, get several bars from several staves.

This first form of the for each loop got a sequence of objects from an object in the next level of the hierarchy of objects. The second form
of the for each loop lets you skip levels of the hierarchy, by specifying what type of object you want to get. This saves a lot of nested
loops:

thisscore = Sibelius.ActiveScore;
for each NoteRest n in thisscore
{

n.AddNote(60); // add middle C
}

By specifying NoteRest after for each, Sibelius knows to produce each NoteRest in each bar in each staff in the score; otherwise it would
just produce each staff in the score, because a Staff object is the type of object at the next hierarchical level of objects. The NoteRests
are produced in a useful order, namely from the top to the bottom staff, then from left to right through the bars. This is chronological
order. If you want a different order (say, all the NoteRests in the first bar in every staff, then all the NoteRests in the second bar in every
staff, and so on) you’ll have to use nested loops.

So here’s some useful code that doubles every note in the score in octaves:
score = Sibelius.ActiveScore;
for each NoteRest chord in score
{

if(not(chord.NoteCount = 0)) // ignore rests
{

note = chord.Highest; // add above the top note
chord.AddNote(note.Pitch+12); // 12 is no. of half-steps (semitones)

}
}

 Sibelius ManuScript Language Tutorial 14

It could easily be amended to double in octaves only in certain bars or staves, only if the notes have a certain pitch or duration, and so on.

This kind of loop is also very useful in conjunction with the user’s current selection. This selection can be obtained from a variable con-
taining a Score object as follows:

selection = score.Selection;

We can then test whether it’s a passage selection, and if so we can look at (say) all the bars in the selection by means of a for each
loop:

if (selection.IsPassage)
{

for each Bar b in selection
{

// do something with this bar
…

}
}

Be aware that you can not add or remove items from bars during iterating. The example of adding notes to chords above is fine because
you are modifying an existing item (in this case a NoteRest), but it’s not safe to add or remove entire items, and if you try to do so, your
plug-in will abort with an error. However, it’s very useful to add or remove items from bars, so you need to do that in a separate for
loop, after first collecting the items you want to operate on into a ManuScript array, something like this:

num = 0;
for each obj in selection
{

if (IsObject(obj))
{

n = "obj" & num;
@n = obj;
num = num + 1;

}
}
selection.Clear();
for i = 0 to num
{

n = "obj" & i;
obj = @n; // get an object from the pseudo array
obj.Select();

}

The @n in this example is the array.

Indirection, Sparse Arrays, and User Properties

Indirection
If you put the @ character before a string variable name, then the value of the variable is used as the name of a variable or method. For
instance:

var="Name";
x = @var; // sets x to the contents of the variable Name
mymethod="Show";
@mymethod(); // calls the method Show

This has many advanced uses, though if taken to excess it can cause the brain to hurt. For instance, you can use @ to simulate “unlimited”
arrays. If name is a variable containing the string "x1", then @name is equivalent to using the variable x1 directly. Thus:

i = 10;
name = "x" & i;
@name = 0;

sets variable x10 to 0. The last two lines are equivalent to x[i] = 0; in the C language. This has many uses; however, you’ll also
want to consider using the built-in arrays (and hash tables), which are documented below.
 Sibelius ManuScript Language Tutorial 15

Sparse Arrays
The method described above can be used to create “fake” arrays through indirection, though this is a little fiddly. ManuScript also pro-
vides Javascript-style sparse arrays, which can store anything that can be stored in a ManuScript variable, including references to ob-
jects. Like a variable, storing a reference to an object in a sparse array will preserve the lifetime of that object (because objects are ref-
erence counted), but the underlying object in Sibelius may become invalid if (say) a Score is modified.

To create a sparse array in ManuScript, use the built-in method CreateSparseArray(a1,a2,a3,a4...an). You can create an empty ar-
ray simply by passing in no variables to the CreateSpareArray method.

Sparse arrays provide a read/write variable called Length that returns or sets the length of the array: when you set Length to a number
greater than the present size of the array, the array is padded with null values; if you set Length to a number smaller than the present size
of the array, any values beyond this number are removed.

To push one or more values to the end of the array, use the method Push(a1, a2, ... an). To remove and return the last element of an
array, use the method Pop().

An example of how to use a sparse array:
array = CreateSparseArray(4,5,6);
array[10] = 19; // creates 11th element of array, intervening elements are null
array.Length = 20; // extends array to 20 elements, new elements are all null

Sparse arrays by their nature may not have values in every array element. To return a new sparse array containing only the populated
indices of the original sparse array (those that are not null), use the array’s ValidIndices variable. For example, using the above
sparse array:

array2 = array.ValidIndices; // will contain values 0, 1, 2, 10 and 19
return array[array2[0]]; // returns the first populated element of array

You can compare two sparse arrays for equality, for example:
if (array = array2) {

// do something
}

To access the end of an array, it’s convenient to use negative indices; e.g. array[-1] returns the last element, array[-2] returns the
penultimate element, and so on. It’s not possible to access elements before the start of the array, so if you do e.g. array[-100] on a
six element array, you will get array[0] returned.

Some things to remember when using sparse arrays:

• Sparse arrays use a zero-based index.

• Elements that have not been initialized are null, and do not cause an error when referenced.

• Assigning to an index beyond the current length increases the Length to one greater than the index is assigned to.

• If an array contains references to objects, whether the arrays are equal or not depends on the implementation of equality for those
objects.

User Properties
All ManuScript objects other than those listed below, including objects created by Sibelius, can have user properties attached to them,
allowing for convenient storage of extra data, encapsulation of several items of data within a single object, and returning more than one
value from a method, among other things.

To create a new user property, use the following syntax:
object._property:property_name = value;

where object is the name of the object, property_name is the desired user property name, and value is the value to be assigned to
the new user property. User properties are read/write and can be accessed as object.property_name.

To get a sparse array containing the names of all the user properties belonging to an object:
names = object._propertyNames;
 Sibelius ManuScript Language Tutorial 16

Here is an example of creating a user property:
nr = bar.NoteRest;
nr._property:original = true;
if (nr.original = true) {

// do something
}

Some things to remember when using user properties:

• If you attempt to get or set a user property that has not yet been created, your plug-in will exit with a run-time error.

• To check whether or not a user property has been created without causing a run-time error, use the notation object._prop-
erty:property_name, which will be null if no matching user property has been created yet.

• User properties cannot be created or accessed for normal data types (e.g. strings, integers, etc.), the global Sibelius object,
old-style ManuScript arrays created by CreateArray(), old-style hashes created by CreateHash(), and null.

• User properties that conflict with an existing property name cannot be accessed as object.property_name (though they can be
accessed using the ._property: notation).

• User properties belong to a particular ManuScript object and disappear when that object’s lifetime ends. To stop an object dying,
you can (for example) store it in a sparse array, but be aware that its contents may become invalid if (say) the underlying score
changes.

Dictionary
Dictionary is a programmer extensible object, simply allowing the use of user properties as above with convenient construction. It
also has methods allowing the use of arbitrarily named user properties, and can also have methods in plug-ins attached to it allowing the
creation of encapsulated user objects (i.e. objects with variables and methods attached to them).

To create a dictionary, use the built-in function CreateDictionary(name1, value1, name2, value2, ... nameN, valueN). This creates
a dictionary containing user properties called name1, name2, nameN with values value1, value2, valueN respectively.

A dictionary can contain named data items (like a struct in languages like C++), or data that is indexed by string, so that you can use
strings to look items up within it.

The values in a dictionary can be accessed using square bracket notation, so you can use a dictionary like a hash table. For example:
test = CreateDictionary("fruit",apple,"vegetable",potato);
test["fruit"] = banana;
test["meat"] = lamb;

You can even put other objects, such as sparse arrays, inside dictionaries. For example:
test2 = CreateDictionary("fruit",
CreateSparseArray(apple,banana,orange));

You can access the user properties within a dictionary using the ._property: notation. For example:
return test2._property:fruit;

which would return the array specified above. Even more direct, you can access user properties in a dictionary as if they were variables
or methods, like this:

test2.fruit;

which would also return the array specified above. You can also return more than one value from any ManuScript method using a dic-
tionary, such as:

getChord()
value = CreateDictionary("a", aNote, "b", anotherNote);
return value;
//... in another method somewhere
chord = getChord();
trace(chord.a);
trace(chord.b);

which returns two values, a and b, which you can access via e.g. chord.a and chord.b.
 Sibelius ManuScript Language Tutorial 17

You can compare two dictionaries for equality. For example:
if (test2 = test3) {
// do something
}

Whether or not dictionaries containing objects evaluate as equal depends on the implementation of equality for those objects.

If you’re comfortable with programming in general, you may find it useful to be able to add methods to dictionaries, particularly if you
are writing code designed to act as a library for other methods or plug-ins to call. Writing code in this way provides a degree of encap-
sulation and can make it easy for client code to use your library.

To add a method to a dictionary, call the dictionary’s SetMethod() method. For example:
pluginmethod "(obj,x,y) {
// a method that does something to obj
}"
test4 = CreateDictionary();
test4.SetMethod("doSomething",Self,"pluginmethod");
test4.doSomething(3,4);

// call pluginmethod within the current plug-in, passing in
// test4 (obj in the method above) and 3 (x in the method
// above) and 4 (y in the method above)

In the example above, doSomething is the name of the method belonging to the dictionary, Self tells the plug-in that the method is
defined in the same plug-in, and pluginmethod is the name of a method elsewhere in the plug-in (shown at the top of the example).

To return a sparse array containing the names of the methods belonging to a dictionary, use the dictionary’s GetMethodNames()
method. You can also check the existence of a particular method using the dictionary’s MethodExists() method. Use the dictio-
nary’s CallMethod() method to call a specific method, where the name of the method is the first parameter, and any parameters to
be passed to the specified method follow.

For example:
array = test4.GetMethodNames(); // create sparse array containing method names
first_method_name = array[0]; // sets first_method_name to name of first method
methodfound = test4.MethodExists("doSomething"); // returns True in this case;
test4.CallMethod("doSomething",5,6);

Everything you put into a dictionary is a user property, so all of the methods outlined in User properties above can be used on data in
dictionaries too.

Using User Properties as Global Variables
You can store SparseArray and Dictionary objects, and indeed any other object, as user properties of the Plugin object itself.
In the example below, Self is the object that corresponds to the running plug-in, and a user property globalData is assigned to the
plug-in, containing a Dictionary:

Self._property:globalData = CreateDictionary(1,2,3,4);
// globalData and Self.globalData can be used interchangeably
trace(globalData);
trace(Self.globalData);

User properties assigned to the plug-in are persistent between invocations. Take care to ensure that these user properties are created be-
fore you attempt to use them, otherwise your plug-in will abort with a run-time error. Using the _property:property_name syntax
never causes run-time errors, but direct references to property_name force a runtime error if property_name hasn't been created yet.
 Sibelius ManuScript Language Tutorial 18

The example below shows how to test the existence of a specific user property, globalCounter, initialize it to 0 if it is not found, then
increment it by 1 every time the plug-in runs:

// Test the persistence of user properties
if (Self._property:globalCounter = null) {
 Self._property:globalCounter = 0;
}
globalCounter = globalCounter + 1;
// this number increases by one every time the plug-in is run
trace(globalCounter);
trace(Self.globalCounter);

If you store a reference to a musical object in a user property that is assigned to the plug-in, there is an increased danger of that reference
becoming invalid due to the score being closed or edited, etc. Use the IsValid() method to validate such data before using it.

User properties of plug-ins will be inaccessible (except by using the _property:property_name syntax) if there is an existing global
variable of the same name.

Watch Out for Recursive Cycles!
Be careful not to create recursive cycles using arrays, user properties and dictionaries. When you use, say, an array in a dictionary, you
are not creating a copy of the array or its values, but a reference to the original array: dictionaries and arrays are objects, not values. As
a result, you could write something where an array contains a dictionary that itself refers to the original array: this will lead to Sibelius
crashing. So be careful!

Other Things to Look Out For
The Parallel 5ths and 8ves plug-in illustrates having several methods in a plug-in, which we haven’t needed so far. The Proof-read
plug-in illustrates that one plug-in can call another – it doesn’t do much itself except call the CheckPizzicato, CheckSuspectClefs,
CheckRepeats and CheckHarpPedaling plug-ins. Thus you can build up meta-plug-ins that use libraries of others. Cool!

(You object-oriented programmers should be informed that this works because, of course, each plug-in is an object with the same pow-
ers as the objects in a score, so each one can use the methods and variables of the others.)

Dialog Editor
For more complicated plug-ins than the ones we’ve been looking at so far, it can be useful to prompt the user for various settings and
options. This may be achieved by using ManuScript’s simple built-in dialog editor. Dialogs can be created in the same way as methods
and data variables in the plug-in editor.

Showing a Dialog in a Plug-In
To show a dialog from a ManuScript method, we use the built-in call

Sibelius.ShowDialog(dialogName, Self);

where dialogName is the name of the dialog we wish to show, and Self is a “special” variable referring to this plug-in (telling Si-
belius to whom the dialog belongs). Control will only be returned to the method once the dialog has been closed by the user.

Creating or Editing a Dialog
To create a new dialog, choose the Dialog radio button at the bottom of the window that lists methods, data and dialogs, and click Add.
To edit an existing dialog, select it from the Dialogs list box at the top right-hand corner of the window, and click Edit.
 Sibelius ManuScript Language Tutorial 19

The dialog form will then appear, along with a long thin “palette” of available controls, as follows:

To create a new control, just drag and drop it from the palette onto the dialog.

Dialog Properties
With no controls selected, either double-click on a blank part of the dialog (or right-click, and then choose Properties) to access the di-
alog’s Properties dialog, which allows you to specify:

• Name: the value of dialogName for the Sibelius.ShowDialog() method call (see Showing a dialog in a plug-in above).

• Title: the name of the dialog as it appears in its title bar.

• Size: the Width and Height (measured in somewhat arbitrary dialog units); you can also set the size of the dialog by resizing it directly
when editing it.

• Position: the X and Y position that the dialog should open at by default.

Laying Out Controls
The dialog editor includes a number of simple options for producing a pleasing layout:

• To select a control, either click it or hit Tab to select the next control in the creation order (Shift-Tab selects the previous control).

• To nudge a selected control, use the arrow keys.

• To align controls, select them using Command-click (Mac) or Control-click (Windows), then use Command+Left Arrow (Mac) or
Control+Left Arrow (Windows) to align all of the selected controls with the left-hand edge of the left-most control, or Command+Up
Arrow (Mac) or Control+Up Arrow (Windows) to align all of the selected controls with the top edge of the top-most control.

• To space controls evenly, select them using Command-click (Mac) or Control-click (Windows), then use Command+Option+Op-
tion+Down Arrow (Mac) or Control+Alt+Shift+Down Arrow (Windows) to space the controls evenly in the distance between the top
edge of the top-most and the bottom edge of the bottom-most controls, or Command+Option+Option+Left Arrow (Mac) or Con-
trol+Alt+Shift+Left Arrow (Windows) to space the controls evenly in the distance between the left-hand edge of the left-most and the
right-hand edge of the right-most controls. Once controls are spaced evenly, you can increase or decrease the space between them pro-
portionally by typing Command+Option+Option+Up, Down, Right, Left Arrow keys (Mac) or Control+Alt+Shift+Up, Down, Right,
Left Arrow keys (Windows) as appropriate.

Control palette

Radio button

Checkbox

Button

Static text

Editable text

Combo box

List box

Group box
 Sibelius ManuScript Language Tutorial 20

You can optionally display a grid to aid with alignment. Right-click on a blank part of the dialog and choose Grid from the context menu
to see a dialog with settings for the grid:

Switch on Show grid to show the grid in the editor. Choose between Dots or Lines, and specify the Opacity of the grid display by ad-
justing the slider. Switch on Snap to grid to enable control snapping as you drag them with the mouse. Although a control that you nudge
with the keyboard will not snap to the grid, one side of its selection outline will flash when it comes into alignment with the grid in either
the horizontal or vertical directions.

Undo and Redo
You can undo and redo everything you have done while editing a dialog using Command+Z (Mac) or Control+Z (Windows) to undo
and Command+Y (Mac) or Control+Y (Windows) to redo.

Testing the Dialog
To test the dialog within the editor, right-click a blank part of the dialog and choose Test from the context menu, or type the shortcut
Command+T (Mac) or Control+T (Windows). To finish testing and return to the editor, press Esc or click any control whose properties
are set to close the dialog (e.g. an OK or Cancel button, if you have created one).

Saving Changes
To save the changes to the dialog, click the close button in the dialog’s title bar. If there are any unsaved changes, Sibelius prompts you
to save the changes.

Set Creation Order
If you have done any programming in other languages that allow you to edit dialogs, you will probably be familiar with the concept of
tab order, which refers to the order in which controls are given the focus when the user repeatedly hits the Tab key to cycle through
them. ManuScript has a similar concept called creation order, so named because the order in which the controls in a dialog are created
affects not only the tab order but also some other subtle things (including radio button grouping—see Radio Buttons).

Grid Settings dialog
 Sibelius ManuScript Language Tutorial 21

To set the creation order of controls in your plug-in’s dialog, right-click on a blank part of the dialog and choose Set Creation Order
from the context menu. A special display appears overlaid on the controls in your dialog, like this:

To set the creation order, simply click on each control in order. If you make a mistake, press Command (Mac) or Control (Windows)
and click on the last control whose order is correct to restart the sequence from that point, then release Command (Mac) or Control (Win-
dows) and resume clicking on the remaining controls. Once you’re done, press Esc to finish editing the creation order.

Control Properties
Every control that you create also has a Properties dialog, which can be accessed by double-clicking a selected control, by right-clicking
and choosing Properties from the context menu, or by pressing Command+Return (Mac) or Control+Return (Windows). The dialog for
a radio button control, for example, is shown below:

Plug-in dialog with creation order overlay

Radio Button Properties dialog
 Sibelius ManuScript Language Tutorial 22

With a control selected, the properties window varies depending on the type of the control, but most of the options are common to all
controls, and these are as follows:

• ID: an internal string that identifies the control; Sibelius generates this for you automatically, but you can change if you like.

• Text: the text appearing in the control.

• Position (X, Y): where the control appears in the dialog, in coordinates relative to the top left-hand corner.

• Size (width, height): the size of the control.

• Variable storing control’s value: the ManuScript Data variable that will correspond to the value of this control when the plug-in is run.

• Method called when clicked: the ManuScript method that should be called whenever the user clicks on this control (leave blank if you
don’t need to know about users clicking on the control).

• Click closes dialog: select this option if you want the dialog to be closed whenever the user clicks on this control. The additional op-
tions Returning True / False specify the value that the Sibelius.ShowDialog method should return when the window is closed
in this way.

• Give this control focus: select this option if the “input focus” should be given to this control when the dialog is opened (such as
whether this should be the control to which the user’s keyboard applies when the dialog is opened). This is mainly useful for editable
text controls.

Other options vary according to the type of control selected.

Combo Boxes and List Boxes
Combo boxes and list boxes have an additional property; you can set a variable from which the control’s list of values should be taken.
Like the value storing the control’s current value, this should be a global Data variable. However, in this instance they have a rather spe-
cial format, to specify a list of strings rather than simply a single string. Look at the variable _ComboItems in Add String Fingering
for an example – it looks like this:

_ComboItems
{

 "1"
 "2"
 "3"
 "4"
 "1 and 3"
 "2 and 4"

}

List boxes have one further property, which is to determine whether they should allow a single selection or multiple selections. The re-
turn value from a combo box or a single-selection list box is a single string. If a list box is set to allow multiple selections, the selection
is returned as an array of strings.

Radio Buttons
Radio buttons also have an additional property that allows one to specify groups of radio buttons in plug-in dialogs. When the user clicks
on a radio button in a group, only the other radio buttons belonging to that groups are deselected; any others in the dialog are left as they
are. This is extremely useful for more complicated dialogs.

To specify a radio group, pick one control from each group that represents the first button of the group, and for these controls ensure that
the checkbox Start a new radio group is selected in the control’s Properties dialog. Then set the creation order of the controls (see Set
Creation Order). A radio button group is defined as being all the radio buttons created between two buttons that have the Start a new
radio group flag set (or between one of these buttons and the end of the dialog). So to make the radio groups work properly, ensure that
each group is created sequentially in order, with the button at the start of the group created first, and then all the rest of the radios in that
group. To finish, click the Set Creation Order menu item again to deactivate this mode.

Static Text
Static text controls additionally allow you to determine whether the text should be aligned to the Left (useful for explanatory text) or to
the Right (useful for text associated with a specific control to its right, such as an edit control, checkbox or combo box).
 Sibelius ManuScript Language Tutorial 23

Buttons
In most plug-in dialogs, you will want the OK button to be the default button for the dialog, such that if the user presses Return or Enter
on their keyboard, the dialog is confirmed, and closes. Likewise, you will want the Cancel button to respond to the user hitting Esc on
their keyboard, closing the dialog without making any changes.

For OK buttons, or other buttons that should confirm the dialog, switch on the Default button for dialog checkbox in the button’s Prop-
erties dialog. Each dialog should only have one default button. You will also normally set Click closes dialog, returning to True. De-
pending on the other controls in your dialog, you may additionally want to check Give this control focus; if you have one or more edit
controls in the dialog, you should probably set Give this control focus on the first of those controls instead.

Cancel buttons, by contrast, should normally only have Click closes dialog, returning set to False.

Debugging Plug-ins
When developing any computer program, it’s all too easy to introduce minor (and not so minor!) mistakes, or bugs. ManuScript per-
forms its own internal error checking at all times, and you’ll find that if you try to access a non-existent method or variable on an object,
or make a syntax error, or attempt to add or remove bars or items from bars while iterating over them, the plug-in will throw an error
and open the plug-in editor window at the line that generated the error.

As ManuScript is a simple, lightweight system, there is no special purpose debugger, but there are a handful of tools provided to help
you debug your plug-ins.

Undo
One good technique for finding problems in your plug-ins is to set Sibelius’s undo buffer to a very small size, or to disable it altogether
(by dragging the slider on the Other page of File > Preferences to its leftmost position). In the unlikely event that ManuScript does not
throw an error when you perform an illegal operation (e.g. adding or deleting an object while iterating over a bar), reducing the undo
buffer to its smallest possible size will expose the problem right away – though be warned, the result of such a problem may be that Si-
belius will crash.

Plug-in Trace Window
The trace window can be shown by choosing Plug-ins > Plug-in Trace Window. A special ManuScript command, trace(string), will
print the specified string in the trace window. This is useful to keep an eye on what your plug-in is doing at particular points. These com-
mands can then be removed when you’ve finished debugging. Another useful feature of the trace window is function call tracing. When
this is turned on, the log will show which functions are being called by plug-ins.

One potential pitfall with the trace(string)approach to debugging is that the built-in hash table and array objects discussed earlier
aren’t strings, and so can’t be output to the trace window. To avoid this problem, both of these objects have a corresponding method
called WriteToString(), which returns a string representing the whole structure of the array or hash at that point. So we could trace
the current value of an array variable as follows:

trace("array variable = " & array.WriteToString());

Checking the Validity of Objects
One of the common problems that you might encounter when writing complex plug-ins is that the object you are trying to operate on is
no longer valid (e.g. it has already been deleted). You can enable error checking – either for all objects, or for individual objects – that
will cause your plug-in to throw an error if an object is no longer valid.

To enable error checking, use the ManuScript command ValidationChecking(enable[, object1[, object2]...]), and set the Boolean
parameter enable to true. If enable is the only parameter, validation checking is enabled for all types of objects, and all plug-ins. If you
supply one or more object parameters (e.g. Tuplet, Score, BarObject, etc.), only those objects will be checked, and only in the cur-
rently running plug-in. You should ensure ValidationChecking is set to false before you give your plug-ins to anybody else to use.

You can also use the special method IsValid() to determine whether an object is valid: it will return false if the object in question
no longer exists. GetValidationError(object) returns an empty string if there is no error, or returns a string if an error has oc-
curred, use trace(GetValidationError(score)); to trace any validation error returned by a Score object to the trace win-
dow.
 Sibelius ManuScript Language Tutorial 24

Stopping the Plug-in
If you want to force your plug-in to stop on a particular error condition, use StopPlugin([message]), which will stop your plug-in,
display the optional message in an alert box, and open the plug-in editor at the line of code reached.

You can also use ExitPlugin(), which exits the plug-in cleanly without dropping into the plug-in editor.

Storing and Retrieving Preferences
In Sibelius 4 or later, you can use Preferences.plg, contributed by Hans-Christoph Wirth, to store and retrieve user-set preferences for
your plug-ins.

How Does it Work?
Preferences.plg stores its data in a text file in the user’s application data folder. Strings are accessed as associated pairs of a key (the name
of the string) and a value (the contents of the string). The value can also be an array of strings, if required.

Initializing the Database

errorcode = Open(pluginname,featureset);

Open the library and lock for exclusive access by the calling plug-in. The calling plug-in is identified with the string pluginname. It is
recommended that this string equals the unique Sibelius menu name of the calling plug-in.

Parameter featureset is the version of the feature set requested by the calling plug-in. The version of the feature set is currently 020000.
Each library release shows in its initial dialog a list of supported feature sets. The call to Open() will fail and show a user message if
you request an unsupported feature set. If you should want to prevent this user information (and probably setup your own information
dialog), use CheckFeatureSet() first.

After Open() the scope is undefined, such that you can access only global variables until the first call to SwitchScope().

Return value: Open() returns zero or a positive value on success. A negative result indicates that there was a fatal error and the database
has not been opened.

• -2 other error

• -1 library does not support requested feature set

• 0 no common preferences database found

• 1 no preferences found for current plug-in

• 2 preferences for current plug-in loaded

In case of errors (e.g. if the database file is unreadable), Open() offers the user an option to recover from the error condition. Only if
this fails too will an error code be returned to the calling plug-in.

errorcode = CheckFeatureSet(featureset);

Check silently if the library supports the requested feature set.

Return value: CheckFeatureSet() returns zero or a positive value on success. A negative value indicates that the requested feature
set is not supported by this version.

errorcode = Close();

Release the exclusive access lock to the library. If there were any changes since the last call to Open() or Write(), dump the data
changes back to disk (probably creating a new score, if there was none present).

Return value: Close() returns zero or a positive value on success. A negative result indicates that there was a fatal error and the da-
tabase has not been written.
 Sibelius ManuScript Language Tutorial 25

errorcode = CloseWithoutWrite();

Release the exclusive access lock to the library, discarding any changes performed since last call to Open() or Write().

Return value: CloseWithoutWrite() returns zero or a positive value on success. A negative result indicates that there was a fatal
error, namely that the database was not open at the moment.

errorcode = Write(dirty);

Force writing the data back to disk immediately. Keep library locked and open. If dirty equals 0, the write only takes place if the data
has been changed. If dirty is positive, the common preferences score is unconditionally forced to be rewritten from scratch.

Return value: Write() returns zero or a positive value on success. A negative result indicates that there was a fatal error and the da-
tabase has not been written.

Accessing Data

index = SetKey(keyname, value);

Store a string value under the name keyname in the database, overwriting any previously stored keys or arrays of the same keyname.

If keyname has been declared as a local key, the key is stored within the current scope and does not affect similar keys in other scopes.
It is an error to call SetKey() for local keys if the scope is undefined.

Return value: SetKey() returns zero or a positive value on success, and a negative value upon error.

errorcode = SetArray(keyname, array, size);

Store an array of strings under the name keyname in the database, overwriting any previously stored keys or arrays of the same keyname.
size specifies the number of elements in the array. A size of -1 is replaced with the natural size of the array, i.e., array.NumChil-
dren.

If keyname has been declared as a local key, the array is stored within the current scope and does not affect similar keys in other scopes.
It is an error to call SetArray() for local keys if the scope is undefined.

Return value: SetArray() returns zero or a positive value on success, and a negative value upon error.

value = GetKey(keyname);

Retrieve the value of key keyname from the database. It is an error to call GetKey() on an identifier which had been stored the last time
using SetArray(). For local keys, the value is retrieved from the current scope which must not be undefined.

Return value: The value of the key or Preferences.VOID if no key of that name found.

size = GetArray(keyname, myarray);

Retrieve the string array stored under name keyname from the database. It is an error to call GetArray() on an identifier which has
been stored the last time by SetKey(). For local arrays, the value is retrieved from the current scope which must not be undefined.

You must ensure before the call that myarray is of ManuScript’s array type (i.e., created with CreateArray()).

Return value: size equals the number of retrieved elements or -1 if the array was not found. Note that size might be smaller than myar-
ray.NumChildren, because there is currently no way to reduce the size of an already defined array.

size = GetListOfIds(myarray);

Fill the array myarray with a list of all known Ids in the current score (or in the global scope, if undefined). Before you call this method,
ensure that myarray is of ManuScript’s array type (i.e. created with CreateArray()).

Return value: returns the size of the list, which might be smaller than the natural size of the array, myarray.Numchildren.
 Sibelius ManuScript Language Tutorial 26

index = UnsetId(keyname);

Erase the contents stored with an identifier (there is no distinction between keys and arrays here). If the key is declared as local, it is
erased only from the local scope which must not be undefined.

Return value: The return value is zero or positive if the key has been unset. A negative return value means that a key of that name has
not been found (which is not an error condition).

RemoveId(keyname);

Erase all contents stored in the database with an identifier (there is no distinction between keys and arrays here). If the key is declared
as local, it is erased from all local scopes.

Return value: The return value is always zero.

RemoveAllIds();

Erase everything related to the current plug-in.

Return value: the return value is always zero.

Commands for Local Variables

errorcode = DeclareIdAsLocal(keyname);

Declare an identifier as a local key. Subsequent calls to Set... and Get... operations will be performed in the scope which is set at
that time. The local state is stored in the database and can be undone by a call to DeclareIdAsGlobal or RemoveId.

Return value: Non-negative on success, negative on error.

size = GetListOfLocalIds(myarray);

Fill the array myarray with a list of all Ids declared as local. Before you call this method, ensure that myarray is of ManuScript’s array
type (i.e. created with CreateArray()).

Return value: Returns the size of the list, which might be smaller than the natural size of the array, myarray.NumChildren.

errorcode = SwitchScope(scopename);

Select scope scopename. If scope scopename has never been selected before, it is newly created and initialized with no local variables.
Subsequent Set... and Get... operations for keys declared as local will be performed in scope scopename, while access to global
keys is still possible.

The call SwitchScope("") selects the undefined scope which does not allow access of any local variables.

Return value: Non-negative on success, negative on error.

errorcode = RemoveScope();

Erase all local keys and arrays from the current scope and delete the current scope from the list of known scopes. It is an error to call
RemoveScope() if the current scope is undefined. After the call, the database remains in the undefined scope.

errorcode = RemoveAllScopes();

Erase all local keys and arrays from all scopes and delete all scopes from the list of known scopes. After the call, the database remains
in the undefined scope. Note that this call does retain the information which Ids are local (see DeclareIdAsLocal()).

Return value: Non-negative on success.

string = GetCurrentScope();

Retrieve the name of the currently active scope, or the empty string if the database is in undefined scope.

Return value: Returns a string.
 Sibelius ManuScript Language Tutorial 27

size = GetListOfScopes(myarray);

Fill the array myarray with a list of all known scope names. You must ensure before the call that myarray is of ManuScript’s array type
(i.e., created with CreateArray()).

Return value: Returns the size of the list, which might be smaller than the natural size of the array, myarray.NumChildren.

Miscellaneous

Trace(tracelevel);

Select level of tracing for the library. Useful levels are: 0 for no trace, 10 for sparse trace, 20 for medium trace, 30 for full trace.
This command can also be run when the library is not open, to specify the tracing level for the Open() call itself.

TraceData();

Writes a full dump of the data stored currently in ThisData array to the trace window. This is the full data belonging to the current
plug-in. TraceData() always traces the data, regardless of the current trace level selected.

filename = GetFilename();

Return the full filename of the preferences database (including path).

Editor();

Invoke the interactive plug-in editor. This method must not be called while the database is open. Direct calls to Editor() from
plug-ins are deprecated, since the end-user of your plug-in will probably not expect to be able to edit (and destroy) the saved preferences
of all plug-ins at this stage.

Basic Example
Suppose you have a plug-in called myplugin and would like to save some dialog settings in a preferences file such that these settings
are persistent over several Sibelius sessions and computer reboots. Your dialog may contain two checkboxes and a list box. Let
DialogDontAskAgain and DialogSpeedMode be the global variables holding the status of the checkboxes, respectively, and let
DialogJobList hold the contents of the list box item.

The work with the database can be reduced to four steps:

1 Open the database and retrieve initial data. At begin of your plug-in, e.g. right at top of your Run() method, you have to add some
code to initialize the database. You probably also want to initialize your global keys based on the information currently stored in the
database. See below for a detailed example. (Depending on your program, you might have to define prefOpen as a global variable
in order to prevent trying to access an unopened database in future.)

// At first define hard coded plug-in defaults, in case that the plug-in
// is called for the first time. If anything else fails, these defaults
// will be in effect.
DialogDontAskAgain = 0;
DialogSpeedMode = 0;
DialogJobList = CreateArray();
DialogJobList[0] = "first job";
DialogJobList[1] = "second job";
// Attempt to open the database
prefOpen = Preferences.Open("myplugin", "020000");
if(prefOpen >= 0) {

// Database successfully opened. So we can try to load the
// information stored last time.
// It’s a good idea to work with a private version scheme, in order
// to avoid problems in the future when the plug-in is developed
// further, but the database still contains the old keys. In our
// example, we propose that the above mentioned keys are present
// if "version" key is present and has a value of "1".
version = Preferences.GetKey("Version");
 Sibelius ManuScript Language Tutorial 28

switch(version) {
case("1") {
// Now overwrite the above set defaults with the information stored
// in the database.
DialogDontAskAgain = Preferences.Getkey("DontAskAgain");
DialogSpeedMode = Preferences.Getkey("SpeedMode");
Preferences.GetArray("JobList", DialogJobList);
}

default {
// handle other versions/unset version gracefully here ...
}

}
}

2 Work with the data. After the initialization step, you can and should work with global variables DialogDontAskAgain,
DialogSpeedMode, and DialogJobList as you are used to: read from them to base control flow decisions on their setting,
write to them (mostly from within your own dialogs) to set new user preferences.

3 Write data back to the database. To make any changes persistent, you must tell the database the new values to be written to the hard
disk. See below for a detailed example. According to taste, you can execute these lines each time the settings are changed, or only
once, at the end of your plug-in.

if(prefOpen >= 0) {
Preferences.SetKey("Version", "1");
Preferences.SetKey("DontAskAgain", DialogDontAskAgain);
Preferences.SetKey("SpeedMode", DialogSpeedMode);
Preferences.SetArray("JobList", DialogJobList, -1);

}

4 Close the database. In any case, you must release the lock to the library on exit of your plug-in. This writes data actually back to disk,
and enables other plug-ins to access the shared database later. To do this, use:

Preferences.Close();
 Sibelius ManuScript Language Tutorial 29

Reference

Syntax
Here is an informal run-down of the syntax of ManuScript.

A method consists of a list of statements of the following kinds:

Block

{statements }

for example:
{

a = 4;
}

While

while { expression } block

for example:
while (i < 3) {

Sibelius.MessageBox(i);
i = i + 1;

}

Switch

switch (test-expression) {
 case (case-expression-1) block
 [case (case-expression-2) block]
 …
 [default block]

The switch statement consists of a “test” expression, multiple case statements and an optional default statement. If the
value of test-expression matches one of the case-expressions, then the statement block following the matching case
statement will be executed. If none of the case statements match, then the statement block following the default state-
ment will be executed. For example:

switch (note.Accidental) {
case (DoubleSharp) {

Sibelius.MessageBox("Double sharp");
}
case (DoubleFlat) {

Sibelius.MessageBox("Double flat");
}
default {

Sibelius.MessageBox("No double");
}

}

if else

if (expression) block [else block]

for example:
if (found) {

Application.ShowFindResults(found);
} else {

Application.NotFindResults();
}

 Reference 30

Expressions
Here are the operators, literals and other beasts you’re allowed in expressions.

for each

for each variable in expression block

This sets variable to each of the sub-objects within the object given by the expression.
Normally there is only one type of sub-object that the object can contain. For instance, a Note
Rest (such as a chord) can only contain Note objects. However, if more than one type of sub-object is possible you can
specify the type:

for each Type variable in expression
block

for example:
for each NoteRest n in thisstaff {

n.AddNote(60); // add middle C
}

for

for variable = value to value [step value]
block

The variable is stepped from the first value up to or down to the end value by the step value. It stops one step before
the final value.
So, for example:

for x=1 to note.NoteCount {
...

}

works correctly.

assignment

variable = expression;

for example:

value = value + 1;

or
variable.variable = expression;

for example:
Question.CurrentAnswer=True;

method call

variable.identifier(comma-separated expressions);

for example:
thisbar.AddText(0,"Mozart","text.system.composer");

self method
call

identifier(comma-separated expressions);

Calls a method in this plug-in, for example:
CheckIntervals();

return

return expression;

Returns a value from a plug-in method, given by the expression. If a method doesn’t contain a return statement, then
a “null” value is returned (either the number zero, an empty string, or the null object described below).

Self
This is a keyword referring to the plug-in owning the method. You can pass yourself to other methods, for
example:
other.Introduce(Self);

null This is a literal object meaning “nothing.”

Identifier
This is the name of a variable or method (letters, digits or underscore, not starting with a digit) you can pre-
cede the identifier with @ to provide indirection; the identifier is then taken to be a string variable whose value
is used as the name of a variable or method.

member variable
variable.variable

This accesses a variable in another object.

integer
for example:

1, 100, -1

floating point
number

for example:

1.5, 3.15, -1.8
 Reference 31

string

Text in double quotes, for example: “some text.” For strings that are rendered by Sibelius as part of the
score, i.e. the contents of some text object, there is a small but useful formatting language allowing one to
specify how the text should appear. These “styled strings” contain commands to control the text style. All
commands start and end with a backslash (\) The full list of available styling commands is as follows:
\n\ New paragraph
\N\ New line
\B\ Bold on
\b\ Bold off
\I\ Italic on
\i\ Italic off
\U\ Underline on
\u\ Underline off
\fArial Black\ Font change to Arial Black (for example)
\ctext.character.musictext\

Character style change to Music text (for example)
\f_\ Font change to text style’s default font, including removing any active character
styles
\s123\ Size change to 123 (units are 1/32nds of a space, not points)
\v\ Vertical scale in percent
\h\ Horizontal scale in percent
\t\ Tracking (absolute) in 1/32nds of a space
\p\ Baseline adjustment: use normal, subscript, or superscript
\$keyword\ Substitutes a string from the Score Info dialog (see below)
A consequence of this syntax is that backslashes themselves are represented by \\, to avoid conflicting
with the above commands.
The substitution command \$keyword\ supports the following keywords:
Title, Composer, Arranger, Lyricist, MoreInfo, Artist, Copyright, Publisher and
PartName.
Each of these correspond to a field in the File > Score Info dialog.

not

not expression

Logically negates an expression, for example:
not (x=0)

and

expression and expression

Logical and, for example:
FoxFound and BadgerFound

or

expression or expression

Logical or, for example:
FoxFound or BadgerFound

equality

expression = expression

Equality test, for example:
Name="Clock"

subtract

expression – expression

Subtraction, for example:
12-1

add

expression + expression

Addition, for example:
12+1

minus

–expression

Inversion, for example:
-1

concatenation

expression & expression

Add two strings, for example:
Name = "Fred" & "Bloggs"; // ‘Fred Bloggs’

You can’t use + as this would attempt to add two numbers, and sometimes succeed (!). For instance:
x = "2" + "2"; // same as x = 4

subexpression

(expression)

For grouping expressions and enforcing precedence, e.g.
(4+1)*5
 Reference 32

Operators

Condition Operators
You can put any expressions in parentheses after an if or while statement, but typically they will contain conditions such as = and <.
The available conditions are very simple:
a = b equals (for numbers, text or objects)
a < b less than (for numbers)
a > b greater than (for numbers)
c and d both are true
c or d either are true
not c inverts a condition, e.g. not(x=4)
<= less than or equal to
>= greater than or equal to
!= not equal to
Use = to compare for equality, not == as found in C/C++ and Java.

Arithmetic
a + b add
a - b subtract
a * b multiply
a / b divide
a % b remainder
-a negate
(a) evaluate first

ManuScript will evaluate expressions from left to right, so that 2+3*4 is 20, not 14 as you might expect. To avoid problems with eval-
uation order, use parentheses to make the order of evaluation explicit. To get the answer 14, you’d have to write 2+(3*4).

ManuScript also now supports floating point numbers, so whereas in previous versions 3/2 would work out as 1, it now evaluates to
1.5. Conversion from floating point numbers to integers is achieved with the RoundUp(expr), RoundDown(expr) and
Round(expr)functions, which can be applied to any expression.

method call

variable.identifier(comma-separated expressions);

for example:

x = monkey.CountBananas();

self method call

Identifier(comma-separated expressions);

Calls a method in this plug-in, for example:
x = CountBananas();
 Reference 33

Object Reference

Hierarchy of Objects

Sibelius object

Score

Stave (including the System Stave)Selection

Bar

Text, Clef, Line, TimeSignature, KeySignature,
Highlight, Lyric, Barline, Tuplet, GuitarFrame,

GuitarScaleDiagram, Comment, AnnotationItem,
NoteRest (these are all BarObjects)

Note (in NoteRests only)

VersionHistory

Version

VersionComment

DynamicPartCollection

DynamicPart

EngravingRules

NoteSpacingRule
 Object Reference
 34

All Objects

Methods
AddToPluginsMenu("menu text","function name") Adds a new menu item to the Plug-ins menu. When the menu item is selected
the given function is called. This is normally only used by plug-ins themselves. This method may only be called once per plug-in (that
is each plug-in may only add one item to the Plug-ins menu); subsequent method calls will be ignored.

Asc(expression) Returns the ASCII value of a given character (the expression should be a string of length 1).

CharAt(expression,position) Returns the character from the expression at the given (zero-based) position, for example
CharAt("Potato",3) would give “a.”

Chr(expression) Returns a character (as a string) with the given ASCII value. This can be used for inserting double quotes (") into
strings with Chr(34).

Cmd(command name) An alias for the Sibelius.FindCommandID() function. For example:
Cmd("ToGGle ReVieW mODe");

Use Cmd() in conjunction with Sibelius.Execute() to execute commands by name rather than by CommandID. For example:
Sibelius.Execute(Cmd("Select All"));

CreateArray() Returns a new array object.

CreateHash() Returns a new hash-table object.

GetInterpreterOption(optionName) Returns a boolean indicating whether the provided interpreter option is enabled or not.

GetValidationError(object) Returns the validation error, if any, of the specified object. Useful to pass validation errors to the
plug-in trace window.

ExitPlugin() Exits the plug-in cleanly without dropping into the plug-in editor.

InterpreterOptionExists(optionName) Returns a boolean indicating whether the interpreter option exists in the running
version of Sibelius.

IsObject(expression) Returns 1 (or True) if expression evaluates to an object rather than a null, boolean, string, or any number.
(Not to be confused with the IsPassage variable of Selection objects!)

IsValid(object) Returns 1 (or True) if the object is valid, returns 0 (or False) if the object no longer exists (that is has been de-
leted).

JoinStrings(expression, delimiter) Joins together (concatenates) an array of strings into a single string, separated by the string de-
limiter.

Length(expression) Gives the number of characters in the value of the expression.

Round(expression) Returns the nearest integer to the value of the expression, for example Round(1.5) would be “2” and
Round(1.3) would be “1.”

RoundDown(expression) Returns the nearest integer less than the value of the expression, for example RoundDown(1.5) would
be “1.”

RoundUp(expression) Returns the nearest integer greater than the value of the expression, for example RoundUp(1.5) would be “2.”

SetInterpreterOption(optionName,[optionValue]) Allows enabling or disabling a particular interpreter option. By de-
fault, if optionValue is not provided, it is assumed that the option should be enabled. Note that the scope of the options are per plug-in
and that once set, the option value persists as long as the plug-in remains loaded. It should be called early in the execution of the plug-in
(it doesn’t hurt to call it more than once).
 Object Reference 35

SplitString(expression,[delimiter,][trimEmpty]) Splits a string into an array of strings, using the given delimiter. The delimiter
can be a single character or a string containing several characters—for instance ".," would treat either a comma or full stop as a de-
limiter. The default delimiter is the space character. If the trimEmpty parameter is True then this will ignore multiple delimiters (which
would otherwise produce some empty strings in the array). The default value of trimEmpty is False.

s=':a:b:c';
bits=SplitString(s,':', false);
// bits[0] = ''; bits[1] = 'a'; bits[2] = 'b' ...
s='a b c';
bits=SplitString(s,' ', true);
// bits[0] = 'a'; bits[1]='b' ...

StopPlugin([message]) Stops the plug-in, and shows the optional message in an alert box. Opens the plug-in editor at the line of
code reached.

StyleCmd (command name) An alias for the Sibelius.FindCommandID() function. For example:
Cmd("ToGGle ReVieW mODe");

Substring(expression,start,[length]) This returns a substring of the expression starting from the given start position (zero-based)
up to the end of the expression, for example Substring("Potato",2) would give “tato”. When used with the optional length pa-
rameter, Substring returns a substring of the of the expression starting from the given start position (zero-based) of the given length, for
example Substring("Potato",2,2) would give “ta”.

Trace(expression) Sends a piece of text to be shown in the plug-in trace window, for example Trace("Here's a trace");

ValidationChecking(enable[, object1[, object2]...]) If enable is the only parameter, validation checking is enabled for all types
of objects, and across all plug-ins. If you supply one or more object parameters (such as Tuplet, Score, BarObject, and so on), only
those objects will be checked, and only in the currently running plug-in. You should ensure ValidationChecking is set to false
before you give your plug-ins to anybody else to use.

User Properties
All objects (except for the Sibelius object, old-style ManuScript arrays created using CreateArray(), old-style ManuScript
hashes created using CreateHash(), and null) can also have user properties assigned to them.

Accessibility
Accessed from the Sibelius object.

Methods
None.

Variables
ScoreDescription Returns true if Sibelius’s built-in score description functionality is enabled (read/write).

AnnotationItem
Represents an annotation. Has no methods or variables but may be referenced in other functions, such as for filtering.

Methods
None.

Variables
None.
 Object Reference 36

Bar
A Bar contains BarObject objects.

for each variable in produces the BarObjects in the bar

for each type variable in produces the BarObjects of the specified type in the bar

Methods
AddBarNumber(new bar number[,format[,extra_text[,prepend[,skip this bar]]]]) Adds a bar number change to the start of this
bar. new bar number should be the desired external bar number. The optional format parameter takes one of the three pre-defined con-
stants that define the bar number format; see Global Constants. The optional extra_text parameter takes a string that will be added after
the numeric part of the bar number, unless the optional boolean parameter prepend is True, in which case the extra_text is added before
the numeric part of the bar number. If the optional skip this bar parameter is True, the bar number change is created with the Don’t in-
crement bar number option set. Returns the BarNumber object created.

AddChordSymbolFromPitches(position,pitches[,instrument style]) Adds a chord symbol from the given array of pitches at the
specified position. The optional instrument style parameter operates the same as in the AddGuitarFrame method (see above). If the
method is unable to create a chord symbol, the method returns null; otherwise it returns the GuitarFrame object created.

AddClef(pos,concert pitch clef[,transposed pitch clef]) Adds a clef to the staff at the specified position. concert pitch clef deter-
mines the clef style when Notes > Transposing Score is switched off; the optional transposed pitch clef parameter determines the clef
style when this is enabled. Clef styles should be an identifier like “clef.treble”; for a complete list of available clef styles, see Clef
Styles. Alternatively you can give the name of a clef style, such as “Treble,” but bear in mind that this may not work in non-English
versions of Sibelius. Returns the Clef object created.

AddComment(sr,text[,color[,maximized]]) Adds a comment at the specified sr position in the current bar, displaying the specified
text. The optional color parameter allows you to specify the color of the comment that is created (if not specified, the comment is created
with its default color), and the optional maximized Boolean parameter allows you to set the comment to be minimized (if not specified,
the comment is created maximized by default). If you want to specify the maximized parameter without specifying a particular color, set
color to -1.

AddCommentWithName(sr,text,username[,color[,maximized]]) Adds a comment that will display a given username at the spec-
ified sr position in the current bar, displaying the specified text. The optional color parameter allows you to specify the color of the com-
ment that is created (if not specified, the comment is created with its default color), and the optional maximized Boolean parameter al-
lows you to set the comment to be minimized (if not specified, the comment is created maximized by default). If you want to specify
the maximized parameter without specifying a particular color, set color to -1.

AddGraphic(file name,pos[,below staff[,x displacement[,y displacement[,size ratio]]]]) Adds a graphic above or below the bar
at a given position. If below staff is True, Sibelius will position the graphic below the staff to which it is attached, otherwise it will go
above (the default). You may additionally displace the graphic from its default position by specifying x- and y displacements. These
should be expressed in millimeters, the latter defining an offset from the top or bottom line of the staff, as appropriate. By default, the
graphic will be created 5mm away from the staff. To adjust the size of the graphic, you may set a floating point number for its size ratio.
When set to 1.0 (the default), the graphic will be created with a height equal to that of the staff to which it is attached. A value of 0.5
would therefore halve its size, and 2.0 double it. The graphic may be rescaled to a maximum of five times the height of its parent staff.
This function returns True if successful, otherwise False.

AddGraphicToBlankPage(file name,nth page,x offset,y offset[,size ratio]) Adds a graphic to a blank page belonging to the cur-
rent bar. nth page specifies the particular blank page you would like the graphic to, starting from 1. The x offset and y offset parameters
are floating point values relative to the size of the page the graphic is being added to. For example, an x offset of 0.0 would position the
graphic at the very left of the page; 0.5 in the center. You may specify the size of the graphic by specifying a value for size ratio. This
defaults to 1.0, which has the same effect as creating a graphic in Sibelius manually using Create > Graphic. (As with AddGraphic,
0.5 would halve its size, and 2.0 double it.) The graphic may be rescaled to a maximum of five times its initial size. This function returns
True if successful, otherwise False.
 Object Reference 37

AddGuitarFrame(position,chord name[,instrument style[,fingerings]) Adds a chord symbol for the given chord name to the bar.
The optional instrument style parameter should refer to an existing instrument type that uses tab, and should be specified by identifier;
see Instrument Types. If instrument style is not specified, Sibelius will create a chord symbol that will optionally display a chord di-
agram using the default tab tuning associated with the instrument type used by the staff to which the chord symbol will be attached. The
position is in 1/256th quarters from the start of the bar. The optional fingerings parameter gives the fingerings string to display above
(or below) the guitar frame, if supplied. If the method is unable to create a chord symbol, the method returns null; otherwise it returns
the GuitarFrame object created.

AddInstrumentChange(pos,styleID[,add_clef[,show_text[,text_label[,show_warning[,warning_label,[full_instrument_nam
e[,short_instrument_name]]]]]]) Adds an instrument change to the bar at the specified position. styleID is the string representing the
instrument type to change to (see Instrument Types for a list). The optional boolean parameter add_clef, True if not specified, deter-
mines whether Sibelius will add a clef change at the same position as the instrument change if required (that is if the clef of the new in-
strument is different to that of the existing instrument). show_text is an optional boolean parameter, True if not specified, determining
whether or not the text label attached to the instrument change should be created shown (the default) or hidden. text_label is an optional
string parameter; if specified, Sibelius will use this string instead of the default string (the new instrument’s long name). show_warning
is an optional boolean parameter, True if not specified, determining whether or not Sibelius should create a text object (using the In-
strument change staff text style) above the last note preceding the instrument change, announcing the instrument change and giving the
player time to pick up the new instrument. warning_label is an optional string parameter; if specified, Sibelius will use this string instead
of the default string (the word “To” followed by the new instrument’s short name). You can also override the names Sibelius will give
the instruments on subsequent systems. If a null string is passed to either full_instrument_name or short_instrument_name (or if the ar-
guments are omitted), the instrument names will remain unchanged. Returns the InstrumentChange object created.

AddKeySignatureFromText(pos,key name,major key[,add double barline[,hidden[,one staff only]]]) Adds a key signature
to the bar. The key signature is specified by text name, such as “Cb” or “C#”. The third parameter is a Boolean flag indicating if the key
is major (or minor). Unless the fourth parameter is set to False, a double barline will ordinarily be created alongside the key signature
change. You may additionally hide the key signature change by setting hidden to True, and make the change of key appear on the bar’s
parent staff only with the one staff only flag. Returns the KeySignature object created.

AddKeySignature(pos,num sharps,major key[,add double barline[,hidden[,one staff only]]]) Adds a key signature to the bar.
The key signature is specified by number of sharps (+1 to +7), flats (–1 to –7), no accidentals (0) or atonal (-8). The third parameter is
a Boolean flag indicating if the key is major (or minor). Unless the fourth parameter is set to False, a double barline will ordinarily be
created alongside the key signature change. You may additionally hide the key signature change by setting hidden to True, and make
the change of key appear on the bar’s parent staff only with the one staff only flag. Returns the KeySignature object created.

AddLine(pos,duration,line style[,dx[,dy[,voicenumber[,hidden]]]]) Adds a line to the bar. The line style can be an identifier
such as “line.staff.hairpin.crescendo” or a name, such as “Crescendo”. For a complete list of line style identifiers that can be used in any
Sibelius score, see Line Styles. Style identifiers are to be preferred to named line styles as they will work across all language versions
of Sibelius. Returns the Line object created, which may be one of a number of types depending on the Line style used.

AddLiveTempoTapPoint(position) Adds a Live Tempo tap point at the rhythmic position specified by position, in 1/256th quarters
from the start of the bar.

AddLyric(position,duration,text[,syllable type [,number of notes,voicenum]]]) This method adds a lyric to the bar. The position
is in 1/256th quarters from the start of the bar, and the duration is in 1/256th quarter units. The two optional parameters allow you to
specify whether the lyric is at the end of a word (value is “1”, and is the normal value) or at the start or middle of a word (value is “0”),
and how many notes the lyric extends beneath (default value 1). You can also optionally specify the voice in which the lyric should be
created; if voicenum is 0 or not specified, the lyric is created in all voices. Returns the LyricItem object created.

AddNote(pos,sounding pitch,duration,[tied [,voice[,diatonic pitch[,string number]]]]) Adds a note to staff, adding to an exist-
ing NoteRest if already at this position (in which case the duration is ignored); otherwise creates a new NoteRest. Will add a new bar
if necessary at the end of the staff. The position is in 1/256th quarters from the start of the bar. The optional tied parameter should be
True if you want the note to be tied. Voice 1 is assumed unless the optional voice parameter (with a value of 1, 2, 3 or 4) is specified.
You can also set the diatonic pitch, that is the number of the “note name” to which this note corresponds, 7 per octave (35 = middle C,
36 = D, 37 = E and so on). If a diatonic pitch of zero is given, a suitable diatonic pitch will be calculated from the MIDI pitch. The op-
tional string number parameter gives a string number for this note, which is only meaningful if the note is on a tablature stave. If this
parameter is not supplied then a default string number is calculated based on the current tablature stave type and the guitar tab fingering
options (specified on the Notes page of File > Preferences). Returns the Note object created (to get the NoteRest containing the note,
use Note.ParentNoteRest).
 Object Reference 38

AddPageNumber([blank page offset]) Creates and returns a page number change at the end of the bar. Due to the nature of adding a
page number change, a page break will also be created at the end of the bar. Therefore, the page number change will actually be placed
at the start of the next bar. The desired properties of the page number change can be set by calling the appropriate methods on the Page
Number Change object returned.

The blank page offset flag allows you to create page number changes on blank pages. If a BarObject is followed by one or more blank
pages, each blank page may also have a page number change of its own. If unspecified, the page number change will be created on the
next available page (whether it contains music or not) after the bar, otherwise the user may specify a 1-based offset which refers to the
nth blank page after the bar itself.

AddPageNumberAtStartOfBar() Creates and returns a page number change at the start of the bar. This is useful for adding a page
number change at the very start of the score, that is to change the initial page number, by using this method on the first bar of the score.
If used on a bar later in the score, it will create the page number change at the end of the previous bar, but unlike the AddPageNumber
method, it will not force a page break, so in general the AddPageNumber method is recommended.

AddRehearsalMark([consecutive[,mark[,new prefix and suffix[,prefix[,suffx[,override defaults]]]]]) Adds a rehearsal mark
above the bar. If no parameters have been specified, the rehearsal mark will inherit the properties of the previous rehearsal mark in the
score, incrementing accordingly. Optionally, the appearance of the rehearsal mark may be overridden. If consecutive is False, Sibelius
will not continue the numbering of the new rehearsal marks consecutively, but allow the user to set a new mark. A mark may be ex-
pressed as a number of a string. For example both 5 and “e” are both valid and equivalent values. If new prefix and suffix is True, the
values set for prefix and suffix will be applied to the new rehearsal mark. The final parameter, override defaults, is a Boolean defaulting
to False whose purpose it is to mimic the behavior of the option with the same name in the Rehearsal Mark dialog in Sibelius.

AddSpecialBarline(barline type[,pos]) Adds a special barline to a given position in a bar; see Global Constants. If no position
has been specified, start repeat barlines will snap to the start of the bar by default. All other special barline types will snap to the end.

AddSymbol(pos,symbol index or name) Adds a symbol to the bar at the specified position. If the second parameter is a number, this
is taken to be an index into the global list of symbols, corresponding to the symbol’s position in the Create > Symbol dialog in Sibelius
(counting left-to-right, top-to-bottom from zero in the top-left hand corner). Some useful symbols have pre-defined constants; see
Global Constants. There are also constants defined for the start of each group in the Create > Symbol dialog, so that to access the 8va
symbol, for example, you can use the index OctaveSymbols + 2.

It’s better to use indices rather than names, because the names will be different across the various language versions of Sibelius. Returns
the Symbol object created, or null if no symbol can be added to the score.

AddText(pos,text,style[,voicenum]) Adds the text at the given position, using the given text style. A staff text style must be used
for a normal staff, and a system text style for a system staff. The styles should be an identifier of the form “text.staff.expression”; for a
complete list of text styles present in all scores, see Text Styles. Alternatively you can give the name of a text style, such as “Expres-
sion”, but be aware that this may not work in non-English versions of Sibelius. You can also optionally specify the voice in which the
lyric should be created; if voicenum is 0 or not specified, the text object is created in all voices. Returns the Text object created.

AddTextToBlankPage(xPos,yPos,text,style,pageOffset) Adds the text at the given position, using the given text style. A blank
page text style must be used; you cannot add staff text or system text to a blank page. style takes a style ID, using the form “text.blank-
page.title”; for a complete list of text styles present in all scores, see Text Styles. xPos and yPos are the absolute position on the page.
pageOffset takes a positive number for a blank page following a special page break (the first blank page is 1), and negative for a blank
page preceding the first bar of the score (the blank page immediately before the first bar is -1, the one before that -2, and so on). Returns
the Text object created.

To add text to a blank page, first create the special page break using the Bar.BreakType variable, and set the number of blank pages
using Bar.NumBlankPages or Bar.NumBlankPagesBefore. Then use Bar.AddTextToBlankPage.

AddTimeSignature(top,bottom,allow cautionary,rewrite music[,use symbol]) Returns an error string (which will be empty if
there was no error) which if not empty should be shown to the user. The first two parameters are the top and bottom of the new time sig-
nature. The third tells Sibelius whether to display cautionary time signatures from this time signature. If rewrite music is True then all
the bars after the inserted the time signature will be rewritten. You can also create common time and alla breve time signatures. If you’re
creating a time signature in 4/4 or 2/2, set use symbol to True and Sibelius will replace the numbers of the time signature with their sym-
bolic equivalent.

AddTimeSignatureReturnObject(top,bottom,allow cautionary,rewrite music[,use symbol]) As above, but returns the time
signature object created, or null if unsuccessful.
 Object Reference 39

AddTuplet(pos,voice,left, right, unit[, style[, bracket[, fullDuration]]]) Adds a tuplet to a bar at a given position. The left and
right parameters specify the ratio of the tuplet, for example 3 (left) in the time of 2 (right). The unit parameter specifies the note value
(in 1/256th quarters) on which the tuplet should be based. For example, if you wish to create an eighth note (quaver) triplet group, you
would use the value 128. The optional style and bracket parameters take one of the pre-defined constants that affect the visual appear-
ance of the created tuplet; see Global Constants. If fullDuration is true, the bracket of the tuplet will span the entire duration of the tu-
plet. Returns the Tuplet object created.

If AddTuplet() has been given illegal parameters, it will not be able to create a valid Tuplet object. Therefore, you should test for
inequality of the returned Tuplet object with null before attempting to use it.

Bar[array element] Returns the nth item in the bar (counting from 0) for example Bar[0]

Clear([voice number]) Clears a bar of all its items, leaving only a bar rest. If a particular voice number is specified, only the items
in that voice will be removed.

ClearNotesAndModifiers([voice number]) Clears a bar of all its notes, rests, tuplets and slurs, replacing them with a single bar
rest. If a particular voice number is specified, only the items in that voice will be removed.

Delete() Deletes and removes an entire bar from a score. This, by definition, will affect all the staves in the score.

DeletePageNumber([blank page offset]) Deletes the page number change at the end of the bar, or if there are one or more blank
pages after the bar, any page number change that occurs on any of those blank pages. If blank page offset is unspecified, the page number
change on the first page after the bar will be deleted.

GetClefAt(pos) Returns a Clef object corresponding to the current clef at the specified rhythmic position.

GetKeySignatureAt(pos) Returns a KeySignature object corresponding to the current clef at the specified rhythmic position.

GetInstrumentTypeAt(pos) Returns an InstrumentType object representing the instrument type used by the bar at the speci-
fied rhythmic position.

GetPageNumber([blank page offset]) Returns the page number change object at the end of the bar, or if the bar contains no page
number change, null. As with AddPageNumber, you may get the page number change from any of the blank pages that follow the bar
by specifying a valid blank page offset.

InsertBarRest(voice number[,rest type]) Inserts a bar rest into the bar, but only if the bar is void of any NoteRests (or an existing
bar rest) using the same voice number. The optional rest type parameter allows you to specify the type of bar rest or repeat bar to be cre-
ated, defined by the constants WholeBarRest (the default if rest type is not specified), BreveBarRest, OneBarRepeat, TwoBar-
Repeat and FourBarRepeat. Returns True if successful.

NthBarObject(n) Returns the nth object in the bar, counting from 0.

RemoveLiveTempoTapPoint(position) Removes a Live Tempo tap point at the rhythmic position specified by position, in 1/256th
quarters from the start of the bar.

ResetSpaceAroundBar(above,below) Does the equivalent of Layout > Reset Space Above Staff and/or Reset Space Below
Staff for the given bar. Set above to True to reset the space above the staff, and below to True to reset the space below the staff.

Respace() Respaces the notes in this bar.

Variables
BarNumber The bar number of this bar. This is the internal bar number, which always runs consecutively from 1 (read only).

BarObjectCount The number of objects in the bar (read only).

BreakType The break at the end of this bar, given by the constants MiddleOfSystem, EndOfSystem, MiddleOfPage, End-
OfPage, NotEndOfSystem, EndOfSystemOrPage or SpecialPageBreak. To learn the correspondence between these con-
stants and the menu in the Bars panel of the Properties window, see the discussion in Global Constants.

When you set the break at the end of a bar to be SpecialPageBreak, Sibelius will add one blank page after the break. You can then
adjust the number of pages by setting the value of either Bar.NumBlankPages or Bar.NumBlankPagesBefore, or tell Sibelius
to restart the music on the next left or right page with Bar.MusicRestartsOnPage.
 Object Reference 40

ExternalBarNumber This has been deprecated as of Sibelius 5, because it can only return a number, and bar numbers that appear
in the score may now include text. Use ExternalBarNumberString instead, which returns the external bar number of this bar, tak-
ing into account bar number changes in the score (read only). Note that you cannot pass this bar number to any of the other ManuScript
accessors; they all operate with the internal bar number instead.

ExternalBarNumberString The external bar number of this bar as a string, taking into account bar number changes and bar num-
ber format changes (read only). Note that you cannot pass this bar number to any of the other ManuScript accessors; they all operate with
the internal bar number instead.

GapAfter Sets the gap (in spaces) after the bar (read/write)

GapBefore Sets the gap (in spaces) before the bar (read/write).

InMultirest Returns one of four global constants describing if and/or where the bar falls in a multirest (read only). The constants
are NoMultirest, StartsMultirest, EndsMultirest and MidMultirest; see Global Constants.

Length The rhythmic length (read only).

MusicRestartsOnPage Tells Sibelius to restart the music on the next left or right page after a special page break, and can only
be set if BreakType is SpecialPageBreak. This variable may be set to only two of the global special page break constants:
MusicRestartsOnNextLeftPage or MusicRestartsOnNextRightPage (write only).

NthBarInSystem Returns the position of the bar in the system, relative to the first bar on the system (bar 0) (read only).

NumBlankPages The number of blank pages following the bar containing a special page break.

NumBlankPagesBefore The number of blank pages preceding the bar containing a special page break. This value only has an effect
if a special page break exists in bar 1.

OnHiddenStave Returns True if the bar is currently hidden by way of Hide Empty Staves (read only).

OnNthPage Returns the zero-based page number on which the bar occurs in the current part (read only).

OnNthPageExternal Returns a string containing the external page number (which is the page number displayed in the score) of the
page in which the bar occurs.

OnNthSystem Returns the zero-based system number (relative to its parent page) in which the bar occurs (read only).

ParentStaff The staff containing this bar (read only).

SectionEnd Corresponds to the Section end checkbox on the Bars panel of Properties (read/write).

Selected Returns True if the entire bar is currently selected (read only).

SpecialPageBreakType Returns the type of the special page break; see the documentation for the Special page break types in
Global Constants (read only).

SplitMultirest When True, a multirest intersecting the bar in question will be split (read/write).

Time The time at which the bar starts in the score in milliseconds (read only).

Barline
Accessed from a Barlines object.

Methods
None.
 Object Reference 41

Variables
BottomStave Returns the Staff object at which the barline ends, relative to the current part.

BottomStaveNum Returns the number of the bottom staff included in the barline, relative to the current part.

TopStave Returns the Staff object at which the barline starts, relative to the current part.

TopStaveNum Returns the number of the top staff included in the barline, relative to the current part.

Barlines
Accessed from a Score Object. Corresponds to the barline groupings in the score.

for each barline in iterates through all the barlines in the list, for example:
s = Sibelius.ActiveScore;
barlines = s.Barlines;
for each barline in barlines {
 // do something with barlines here
}

Array access [int n] returns the nth barline in the list, or null if the barline does not exist.

Methods
AddBarline(top staff number, bottom staff number) Creates a new bar line inclusively spanning the staff numbers (relative to the
current part) supplied. Returns the new Barline object created, or null if it fails.

ClearAll() Removes all the barlines from the score.

DeleteNthBarline(index) Removes a given barline identified by index from the score.

Variables
NumChildren Returns the number of unique barlines in the score (read only).

BarObject
BarObjects include Clef, Line, NoteRest, and Text objects. All the methods and variables below apply to all specific types of
BarObject—they are listed here instead of separately for each type. (To object-oriented programmers, the NoteRest, Clef, and those
types are derived from the base class BarObject.)

Methods
Delete() Deletes an item from the score. This will completely remove text objects, clefs, lines and so on from the score; however,
when a NoteRest is deleted, it will be converted into a rest of similar duration. To delete multiple items from a bar, see Deleting Multiple
Objects from a Bar.

Deselect() Removes the object from the selection list of the parent score. If the selection is currently a passage selection, it is first
changed to a multiple selection before the object is deselected. Returns True if the object is successfully removed from the selection.

FreezeMagneticLayoutPositions() Does the same as selecting an object and choosing Layout > Freeze Magnetic Layout
Positions, that explicitly sets the object’s Dx/Dy to the position produced by Magnetic Layout, then disables Magnetic Layout for that
object.

GetIsInVoice(voicenum) Returns True if the object is in the voicenum specified.

GetPlayedOnNthPass(n) Returns True if the object is set to play back the nth time.
 Object Reference 42

NextItem([voice[, item type]]) Returns the next item in the parent bar of the current item, or null if no item exists. If no arguments
have been supplied, the very next item in the bar will be returned, regardless of its voice number and item type. You may additionally
specify the voice number of the object you’re looking for (1 to 4, or 0 for any voice number), and the item’s type. Note that an item will
only be returned if it exists in the same bar as the source item. By way of example, to find the next crescendo line in voice 2, you would
type something along the lines of: hairpin = item.NextItem(2, “CrescendoLine”);

PreviousItem([voice[, item type]]) As above, but searches backwards.

RemoveVoice(voicenum) Removes the object from the specified voicenum, leaving the object in all remaining voices.

ResetPosition([horizontal[, vertical]]) Performs Layout > Reset Position on the object. If you supply no parameters, this
method will reset both the horizontal and vertical position of the object. If either or both of the optional Boolean parameters horizontal
or vertical is set to True, you can reset the position of the object either horizontally or vertically independently if required.

ResetDesign() Performs Layout > Reset Design on the object.

Select() Appends the object to the selection list of the parent score. A multiple selection consisting of any number of individual ob-
jects can be built up by repeatedly calling Select on each object you wish to add to the list. Note that calling Select on a BarObject
will first clear any existing passage selection.

SetAllVoices() Sets the object to be in all voices. This has no effect on some types of object, such as NoteRests.

SetVoice(voicenum[,clear other voices]) Sets the object to be in voice voicenum, optionally removing the object from all other
voices if the Boolean parameter clear other voices is True.

ShowInAll() Shows the object in the full score, and in all relevant parts; equivalent to Edit > Hide or Show > Show In All.

ShowInParts() Hides the object in the full score, and shows it in all relevant parts; equivalent to Edit > Hide or Show > Show In
Parts.

ShowInScore() Hides the object in all relevant parts, and shows it in the full score; equivalent to Edit > Hide or Show > Show In
Score.

SetPlayedOnNthPass(n, do play) Tells Sibelius whether or not the object should play back the nth time.

TimeOnNthPass(n) Returns the time at which the object occurs in the score in milliseconds on the nth pass through the score, where
n is an integer specifying the pass (specify 1 for the first pass through the score), or returns -1 in the case of an error (because the spec-
ified value of n is out of range).

Variables
CanBeInMultipleVoices Returns True if the object can be in more than one voice (read-only).

Color The color of this BarObject (read/write). The color value is in 24-bit RGB format, with bits 0–7 representing blue, bits 8–
15 green, bits 16–23 red and bits 24–31 ignored. Since ManuScript has no bitwise arithmetic, these values can be a little hard to manip-
ulate; you may find the individual accessors for the red, green and blue components to be more useful (see below). In order to write a
value to this variable, the object must be selected.

ColorAlpha The alpha channel component of the color of this BarObject, in the range 0–255 (read/write). In order to write a value
to this variable, the object must be selected.

ColorRed The red component of the color of this BarObject, in the range 0–255 (read/write). In order to write a value to this vari-
able, the object must be selected.

ColorGreen The green component of the color of this BarObject, in the range 0–255 (read/write). In order to write a value to this
variable, the object must be selected.

ColorBlue The blue component of the color of this BarObject, in the range 0–255 (read/write). In order to write a value to this vari-
able, the object must be selected.

CueSize True if the object is cue-size in the current part or score, and False if the object is normal size (read/write).

CurrentTempo Returns the tempo, in bpm, at the location of the object in the score (read only).
 Object Reference 43

DrawOrder Returns the layer at which the object is currently drawn. When used to set the layer of an object, values from 1 (meaning
the bottom layer) to 32 (meaning the highest layer) can be used; 0 is a special value that tells Sibelius to use the default layer for that
type of object (read/write).

Dx The horizontal graphic offset of the object from the position implied by the Position field, in units of 1/32 spaces (read/write).

Dy The vertical graphic offset of the object from the center staff line, in units of 1/32 spaces, positive going upwards (read/write).

HasCustomDrawOrder Returns True if the object is set to a layer other than its default layer (read only).

Hidden True if the object is hidden in the current part or score, and False if the object is shown (read/write).

OnNthBlankPage Returns 0 if the object occurs on a page of music, otherwise a number from 1 upwards indicating the nth blank
page of the bar on which the object occurs (read only).

ParentBar The Bar containing this BarObject (read only).

Position Rhythmic position of the object in the bar (read only).

Selected Returns True if the object is currently selected (read only).

Time The time at which the object occurs in the score in milliseconds; if the score contains repeats, this will always return the time as
if for the first pass through the score (read only). Returns -1 in the case of an error.

Type A string describing the type of object, such as “NoteRest,” “Clef.” This is useful when hunting for a specific type of object in a
bar. See GuitarScaleDiagram for the possible values (read only).

UsesMagneticLayout Returns True if the object is positioned by Magnetic Layout. Returns False if the object is set not to be
taken into account by Magnetic Layout. To set whether or not an object should use Magnetic Layout, use one of the global constants
AlwaysDodge (equivalent to Edit > Magnetic Layout > n), SuppressDodge (Edit > Magnetic Layout > Off) or DefaultDodge
(Edit > Magnetic Layout > Default) (read/write).

UsesMagneticLayoutSettingOverridden Returns True if the object has had its Magnetic Layout settings overridden; other-
wise False.

VoiceNumber Is 0 if the item belongs to more than one voice (a lot of items belong to more than one voice) and 1 to 4 for items that
belong to voices 1 to 4 (read only).

Voices Returns or sets Sibelius’s internal bit field that represents the voices to which an object belongs; useful for copying the voices
used by a given object (read/write).

Deleting Multiple Objects from a Bar
If you wish to delete multiple objects from a bar, you should first build up a list of items to delete, then iterate over the list deleting each
object in turn. It is not sufficient to simply delete the objects from the bar as you iterate over them, as this may cause the iterator to go
out of sync.

Therefore, code to delete all tuplets from a bar should look something like this:
counter = 0;
for each Tuplet tup in bar {
 name = "tuplet" & counter;
 @name = tup;
 counter = counter + 1;
}
// Delete objects in reverse order
while(counter > 0) {
 counter = counter - 1;
 name = "tuplet" & counter;
 tup = @name;
 tup.Delete();
}

 Object Reference 44

BarRest
Derived from a BarObject object.

Methods
None.

Variables
PauseType Returns the type of fermata (pause), if any, on the bar rest. Returns one of the constants PauseTypeNone
(0), PauseTypeSquare (1), PauseTypeRound (2), PauseTypeTriangular (3) (read/write).

RestType Returns the type of bar rest via one of the constants WholeBarRest (0), BreveBarRest (1), OneBarRepeat (2),
TwoBarRepeat (3), FourBarRepeat (4) (read only). To create a bar rest of a particular type, use bar.InsertBarRest() (see
above).

Bracket
Accessed from a BracketsAndBraces object.

Methods
None.

Variables
BottomStave Returns the Staff object at which the bracket ends, relative to the current part.

BottomStaveNum Returns the number of the bottom staff included in the bracket, relative to the current part.

BracketType Returns the type of the bracket: BracketFull, BracketBrace or BracketSub.

TopStave Returns the Staff object at which the bracket starts, relative to the current part.

TopStaveNum Returns the number of the top staff included in the bracket, relative to the current part.

Brackets and Braces
Accessed from a Score object. Describes the brackets (which may be brackets, sub-brackets or braces) present in the score. for each
bracket in iterates through all the brackets in the list. Array access [int n] returns the nth bracket in the list, or null if the bracket does
not exist.

Methods
AddBracket(type, top staff number, bottom staff number) Creates a bracket of a given type, spanning the range of staves specified
between top staff number and bottom staff number inclusive, and returns the new Bracket object. The staff numbers are relative to the
current part view. Values for type are BracketFull (0), BracketBrace (1) and BracketSub (2).

ClearAll() Removes all existing brackets, sub-brackets and braces from the current part, and returns the number of brackets re-
moved.

DeleteNthBracket(n) Deletes the nth bracket from the current part, and returns True if successful.

Variables
NumChildren Returns the number of child brackets, sub-brackets and braces in the list.
 Object Reference 45

Clef
Derived from a BarObject.

Methods
None.

Variables
ClefStyle The name of this clef, which may be different depending on the state of Notes > Transposing Score (read only).

ConcertClefStyleId The concert pitch identifier of the style of this clef (read only).

ConcertClefStyle The concert pitch name of this clef (read only).

StyleId The identifier of the style of this clef, which may be different depending on whether or not Notes > Transposing Score is
enabled. This can be passed to the Bar.AddClef method to create a clef of this style (read only).

TransposingClefStyle The transposing score name of this clef (read only).

TransposingClefStyleId The transposing score identifier of the style of this clef (read only).

Comment
Derived from a BarObject.

Methods
None; create via BarObject.

Variables
Maximized Returns True if the comment is maximized, otherwise returns False (read/write).

Text Returns the text of the comment (read/write).

TextWithFormatting Returns an array containing the various changes of font or style (if any) within the comment’s text in a new
element (read only). For example, “This text is \B\bold\b\, and this is \I\italic\i\” would return an array with eight elements containing
the following data:

arr[0] = “This text is “
arr[1] = “\B\”
arr[2] = “bold”
arr[3] = “\b\”
arr[4] = “, and this is “
arr[5] = “\I\”
arr[6] = “italic”
arr[7] = “\i\”

TextWithFormattingAsString The comment’s text including any changes of font or style (read only).

TimeStamp Returns a DateTime object corresponding to the date the comment was created or last edited (read only).

UserName Returns the username of the user who created or last edited the comment (read only).
 Object Reference 46

ComponentList
An array that is obtained from Sibelius.HouseStyles or Sibelius.ManuscriptPapers. It can be used in a for each loop
or as an array with the [n] operator to access each Component object:

Methods
None.

Variables
NumChildren Number of plug-ins (read only).

Component
This represents a Sibelius “component,” namely a house style or a manuscript paper. Examples:

// Create a new score using the first manuscript paper
papers=Sibelius.ManuscriptPapers;
score=Sibelius.New(papers[0]);
// Apply the first house style to the new score
styles=Sibelius.HouseStyles;
score.ApplyStyle(styles[0], "ALLSTYLES");

Methods
None.

Variables
Name The name of the component (read only).

DateTime
This object returns information about the current date and time.

Methods
None.

Variables
Seconds Returns the number of seconds from the time in a date (read only).

Minutes Returns the number of minutes from the time in a date (read only).

Hours Returns the number of hours from the time in a date (read only).

DayOfMonth Returns the nth day on the month, 1-based (read only).

Month Returns the nth month of the year, 1-based (read only).

Year Returns the year (read only).

NthDayOfWeek Returns the nth day of the week, 0-based (read only).

NthDayOfYear Returns the nth day of the year, 0-based (read only).

LongDate Returns the date in a human-readable format, for example: 1st May 2008 (read only).

ShortDate Returns the date in a human-readable format, for example: 01/05/2008 (read only).
 Object Reference 47

LongDateAndTime Returns the date and time in a human-readable format, for example: 1st May 2008 14:07 (read only).

ShortDateAndTime Returns the date and time in a human-readable format, for example: 01/05/2008 14:07 (read only).

TimeWithSeconds Returns the time in a human-readable format, for example: 14:07 (read only).

TimeWithoutSeconds Returns the time in a human-readable format, for example: 14:07:23 (read only).

Dictionary
To create a dictionary, use the built-in function CreateDictionary(name1, value1, name2, value2, ... nameN, valueN).
This creates a dictionary containing user properties called name1, name2, nameN with values value1, value2, valueN respectively.

To iterate over dictionaries:

1 To iterate over element values in Dictionary objects, use for each n in Dictionary or for each Value n in
Dictionary.

2 To iterate over element names in Dictionary objects, use for each Name n in Dictionary.

3 To iterate over value.name pairs in Dictionary objects, use for each Pair n in Dictionary; this returns a new
Dictionary object: n.Name is the element name, n.Value is the element value.

Methods
CallMethod(methodname,param1,param2,...paramN) Calls the specified method methodname in the dictionary, passing in any
other values that are required for the method as further parameters.

GetMethodNames() Returns a sparse array containing the names of the methods belonging to a dictionary.

GetPropertyNames() Returns a sparse array of the names of all the user properties in the dictionary (same as _propertyNames).

MethodExists(methodname) Returns True if the specified method methodname exists in the dictionary.

PropertyExists(propertyname) Returns True if the specified user property propertyname exists in the dictionary.

SetMethod(methodname,Self,method) Binds a method to the dictionary. methodname is the name by which you want to access
the method via the dictionary, Self refers to the plug-in in which the method is found, and method is the name of the method itself,
found elsewhere in the plug-in.

Variables
None.

Converting Old-Style Hash Tables to Dictionaries
The Dictionary object is, among other things, a replacement for the old Hash object, which was a simple hash table object. You are
recommended to use the new Dictionary object instead of the old Hash object in your plug-ins, but if you have an existing plug-in
in which old-style hashes are used, you can convert them to Dictionaries as follows:

Hash.ConvertToDictionary() Returns a new Dictionary object, populated with strings converted from the old-style Hash.

DocumentSetup
Accessed from a Score object, DocumentSetup corresponds to the settings in Layout > Document Setup.

When you first access the DocumentSetup object, the units default to millimeters; if you want to use another unit of measurement, set
DocumentSetup.Units before you set any of the other values. This will not, however, change the units displayed in Layout > Doc-
ument Setup; to do that, set DocumentSetup.UnitsInDocumentSetupDialog.
 Object Reference 48

Be careful also that if you set DocumentSetup.PageSize after setting DocumentSetup.PageWidth or
DocumentSetup.PageHeight, the page size specified will override any custom height/width you may have just set: so set the page
size before you then adjust the width or height of the page.

Methods
None.

Variables
AboveTopStaveGap Returns or sets the top staff margin on each page in the units specified by the Units variable (read/write).

AboveTopStaveGapAfterFirstPage Returns or sets the top staff margin on pages after the first page in the units specified by the
Units variable (read/write). To set this, first set FirstPageHasUniqueVerticalStaveMargins to True.

BelowBottomStaveGap Returns or sets the bottom staff margin on each page in the units specified by the Units variable
(read/write). To set this, first set FirstPageHasUniqueVerticalStaveMargins to True.

BelowBottomStaveGapAfterFirstPage Returns or sets the bottom staff margin on each page after the first page in the units
specified by the Units variable (read/write).

FirstPageHasUniqueVerticalStaveMargins Returns True if the After first page checkbox is enabled in Document Setup,
specifying that the first page of the score has different top and bottom staff margins to subsequent pages; otherwise returns False
(read/write).

Orientation Returns or sets the current page orientation. Values are OrientationPortrait (0) and OrientationLand-
scape (1). If you change the orientation, this will swap the PageTopMargin and PageBottomMargin values with the PageLeft-
Margin and PageRightMargin values, to reflect the change in orientation (read/write).

PageHeight Returns or sets the height of a page in the units specified by the Units variable (read/write).

PageSize Returns or sets the current page size. Values are listed in PageSize Values. If you attempt to set PageSize to Page-
SizeCustom, Sibelius will do nothing; to set a custom page size, set PageWidth and PageHeight individually. Setting any default
PageSize value will also change the PageWidth and PageHeight values (read/write).

PageWidth Returns or sets the width of a page in the units specified by the Units variable (read/write).

MarginType Returns or sets the current page margin type. Values are PageMarginsSame (0), PageMarginsMirrored (1),
PageMarginsDifferent (2) (read/write).

PageBottomMargin Returns or sets the bottom page margin in the units specified by the Units variable (read/write).

PageLeftMargin Returns or sets the left page margin in the units specified by the Units variable (read/write).

PageRightMargin Returns or sets the right page margin in the units specified by the Units variable (read/write).

PageTopMargin Returns or sets the top page margin in the units specified by the Units variable (read/write).

RightPageLeftMargin Returns or sets the left page margin for right-hand pages in the units specified by the Units variable
(read/write). Setting this value automatically sets MarginType to PageMarginsDifferent.

RightPageRightMargin Returns or sets the right page margin for right-hand pages in the units specified by the Units variable
(read/write). Setting this value automatically sets MarginType to PageMarginsDifferent.

StaffLeftMarginFullNames Returns or sets the margin to the left of staves showing full instrument names in the units specified
by the Units variable (read/write).

StaffLeftMarginNoNames Returns or sets the margin to the left of staves showing no instrument names in the units specified by
the Units variable (read/write).

StaffLeftMarginShortNames Returns or sets the margin to the left of staves showing short instrument names in the units spec-
ified by the Units variable (read/write).

StaffSize Returns or sets the staff size in the units specified by the Units variable (read/write).
 Object Reference 49

Units Returns or sets the units of measurement for all of the relevant variables of the DocumentSetup object. Always returns 0
(millimeters). Values are DocumentSetupUnitsmm (0), DocumentSetupUnitsInches (1), DocumentSetupUnitsPoints
(2) (read/write).

UnitsInDocumentSetupDialog Returns or sets the units of measurement currently shown in the Layout > Document Setup dia-
log. Values are as for Units.

DynamicPartCollection
Accessed from a Score object. DynamicPartCollection contains DynamicPart objects.

The DynamicPartCollection object always contains the full score as the first entry, whether or not any dynamic parts exist. The
DynamicPart objects are returned in the order in which they were created (the last part returned is the most-recently created one). For
scores in which dynamic parts were generated automatically, the parts will normally be returned in top to bottom score order.

The edit context for ManuScript is stored in the score itself which means that ManuScript can only ever access one part at a time – the
“current” DynamicPart for that Score object. This is irrespective of the number of score windows open for a score, which dynamic
parts are open, and even if the user has managed to create two different ManuScript Score objects referring to the same Sibelius score.

It is inadvisable to modify Staves, Bars, or any BarObjects that do not exist on Staves in Score.CurrentDynamicPart. Doing so
will create part overrides for part-specific properties of these objects which will be invisible until those Staves are added to the part. Dy-
namicPart.IncludesStaff() can be used to test if a DynamicPart contains a particular Staff object.

Both DynamicPartCollection and DynamicPart refer to an underlying Score and part(s) and will generate errors if the Score
and/or part(s) are no longer valid (for example, if a DynamicPart has been deleted). DynamicPart are never “re-used.” For example,
if you delete a DynamicPart and create a new DynamicPart, the old ManuScript DynamicPart object will not refer to the
newly-created DynamicPart.

for each variable in iterates through all valid DynamicPart objects for the Score, always starting first with the full score. Adding
or deleting parts while iterating will have undefined results, and is not recommended.

Array access [int n] returns the nth part (0 is always the full score), or null if the part does not exist.

Methods
CreateDefaultParts() Creates the default set of dynamic parts, as created automatically by Sibelius when clicking the New Part
button in the Parts window. This method does nothing and returns False if the Score has no staves.

CreatePartFromStaff(staff) Creates a dynamic part from the specified Staff object, if valid. Returns the new DynamicPart
object for success, or null for failure.

DeletePart(dynamic part) Deletes the specified part, if it’s valid. Returns True for success, False for failure. This method fails
is the specified dynamic part is the currently active part for the Score, or is the full score, or refers to a different Score.

Variables
NumChildren Returns the number of DynamicPart objects for the Score returned by iteration (read only).

DynamicPart
Accessed from a DynamicPartCollection object.

for each variable in returns the Staff objects in the dynamic part, in top to bottom order.

This can return a Staff that is not included in Score.CurrentDynamicPart.
 Object Reference 50

Methods
AddStaffToPart(staff) Adds the specified staff to the bottom of the dynamic part. Returns False for failure. This method will
cause an error if it is called on the full score, or if attempting to add a staff that is already present in the part or a staff from a different
score.

DeleteStaffFromPart(staff) Deletes the specified staff from the dynamic part. Returns False for failure. This method will cause
an error if called on the full score, or if attempting to delete a staff that is not present in the part, or if deleting the last staff in a part, or
attempting to delete a part from a different score.

IncludesStaff(staff) Returns True if the specified staff is contained in this dynamic part.

Variables
IsFullScore Returns True if this is the full score (read only).

IsSelectedInPartsWindow Returns True if the part is selected in the Parts window (read only).

StaveCount Returns the number of staves in the part (read only).

ParentScore Returns the Score object containing this dynamic part (read only).

EngravingRules
Accessed via the Score object. Corresponds to selected settings in the House Style > Engraving Rules dialog.

Methods
BarNumberFrequency(BarNumberFrequencyCategory, [customFrequency) Equivalent to setting the Bar Number
Frequency setting in the Engraving Rules Dialog. Valid BarNumberFrequencyCategory values include: EverySystem (0),
NoBarNumbers (1), EveryNthBar (2). The optional customFrequency argument is used in conjunction with the
EveryNthBar (2) BarNumberFrequencyCategory, and sets how often (in bars) Bar Numbers will appear in the score.

Variables
AdjustTranspositionIfKeySigWraps Returns True if Sibelius will adjust note spelling for transposing instruments in ex-
treme keys, False otherwise; corresponds to the Adjust note spelling in transposing instruments in remote keys option on the Clefs
and Key Signatures page (read/write).

BarlineJoinSystemEnd Returns True if Sibelius will draw complete barlines at the end of a system regardless of the barline breaks
within a system; False otherwise, corresponding to the option Join barlines at end of systems on the Barlines page (read/write).

BarlineSingleStaves Returns True if Sibelius will draw barlines on a single staff; False otherwise, corresponding to the option
Barline at start of single staves on the Barlines page (read/write).

BeamThickness Returns or sets the thickness of beams in spaces, from the Beams and Stems page (read/write).

BarlineWidth Returns or sets the width of normal barlines in spaces, from the Barlines page (read/write).

CautionaryNaturalsInKeySignatures Returns True if key changes will show cautionary naturals; False otherwise, from
the Clefs and Key Signatures page (read/write).

CueNoteScale Returns or sets the percentage by which cue-sized notes are scaled relative to normal-sized notes, from the Notes and
Tremolos page (read/write).

DashedBarlineGap Returns or sets the gap between dashes of dashed barlines in spaces, from the Barlines page (read/write).

DashedBarlineLength Returns or sets the length of the dashes of dashed barlines in spaces, from the Barlines page (read/write).

DashedBarlineWidth Returns or sets the width of dashed barlines in spaces, from the Barlines page (read/write).

DottedBarlineGap Returns or sets the gap between dots of dotted barlines in spaces, from the Barlines page (read/write).

DottedBarlineWidth Returns or sets the width of dotted barlines in spaces, from the Barlines page (read/write).
 Object Reference 51

DoubleBarlineSeparation Returns or sets the distance between the lines in double or triple barlines in spaces, from the Barlines
page (read/write).

DoubleBarlineWidth Returns or sets the width of the lines in double or triple barlines in spaces, from the Barlines page
(read/write).

DoubleTremoloStyle Returns or sets the style used for double tremolos in the score, from the Notes and Tremolos page; values
are DoubleTremolosTouchingStems (0), DoubleTremolosBetweenStems (1), DoubleTremolosOuterTremolo-
TouchingStems (2) (read/write).

ExtraSpacesAboveForSystemObjectPositions Returns or sets the n extra spaces above for System Object Positions
value on the Staves page (read/write).

ExtraSpacesBelowVocalStaves Returns or sets the n extra spaces below vocal staves (for lyrics) value on the Staves page
(read/write).

ExtraSpaceBetweenGroupsOfStaves Returns or sets the n extra spaces between groups of staves value on the Staves page
(read/write).

FinalBarlineSeparation Returns or sets the distance between the two lines in final or repeat barlines in spaces, from the
Barlines page (read/write).

FinalBarlineThinWidth Returns or sets the width of the thin line in final or repeat barlines in spaces, from the Barlines page
(read/write).

FinalBarlineWidth Returns or sets the width of the thick line in final or repeat barlines in spaces, from the Barlines page
(read/write).

GraceNoteScale Returns or sets the percentage by which grace notes are scaled relative to normal notes, from the Notes and Trem-
olos page (read/write).

InstrumentNamesFirstSystem Corresponding to the option for instrument names on the first system on the Instruments page;
values are InstrumentNamesFull (0), InstrumentNamesShort (1), InstrumentNamesNone (2) (read/write).

InstrumentNamesNewSections Corresponding to the option for instrument names at the start of new sections on the Instruments
page; values are InstrumentNamesFull (0), InstrumentNamesShort (1), InstrumentNamesNone (2) (read/write).

InstrumentNamesSubsequentSystems Corresponding to the option for instrument names on subsequent systems on the
Instruments page; values are InstrumentNamesFull (0), InstrumentNamesShort (1), InstrumentNamesNone (2)
(read/write).

JustifyGrandStaveInstruments Returns True if Justify both staves of grand staff instruments on the Staves page is en-
abled, otherwise False (read/write).

JustifyMultiStaveInstruments Returns True if Justify all staves of multi-staff instruments on the Staves page is enabled,
otherwise False (read/write).

LegerLineThickness Returns or sets the thickness of leger lines in spaces, from the Notes and Tremolos page (read/write).

RepeatBarlineAllDots Returns True if Sibelius will draw dots in repeat barlines on in every staff space; False otherwise, corre-
sponding to the option Repeats with dots in all staff spaces on the Barlines page (read/write).

RepeatBarlineDoubleThick Returns True if Sibelius will draw coincident repeat barlines as two thick lines rather than a three
thin, thick, thin lines; False otherwise, corresponding to the option Double thick lines for coincident repeats on the Barlines page
(read/write).

RepeatBarlineWings Returns True if Sibelius will draw wings on repeat barlines; False otherwise, corresponding to the option
Wings on repeat barlines on the Barlines page (read/write).

RespellRemoteKeysInTransposingScore Returns True if Sibelius will choose the equivalent key signature with one fewer
flat or sharp for transposing instruments; False otherwise, corresponding to the option Respell remote key signatures in transposing
score on the Clefs and Key Signatures page (read/write).

ShowNameOfPrevailingInstrumentChangeAtStartOfSystems Returns True if Sibelius will update the instrument name
at the start of each system to reflect the current instrument change, False otherwise; corresponds to the Change instrument names
at start of system after instrument changes option on the Instruments page (read/write).
 Object Reference 52

SlurMiddleThickness Returns or sets the default thickness of the middle of slurs in spaces, from the Slurs page (read/write).

SlurOutlineWidth Returns or sets the thickness of slur ends in spaces, from the Slurs page (read/write).

SmallStaffSizeScale Returns or sets the percentage by which small staves are scaled relative to normal-sized staves, from the
Staves page (read/write).

SpacesBetweenStaves Returns or sets the n spaces between staves value on the Staves page (read/write).

SpacesBetweenSystems Returns or sets the n spaces between systems value on the Staves page (read/write).

StaffJustificationPercentage Returns or sets the Justify staves when page is at least n% full value on the Staves page
(read/write).

StaffLineWidth Returns or sets the width of a staff line in spaces, from the Staves page (read/write).

StemThickness Returns or sets the thickness of stems in spaces, from the Beams and Stems page (read/write).

ThickBarlineWidth Returns or sets the width of thick barlines in spaces, from the Barlines page (read/write).

TieMiddleThickness Returns or sets the thickness of the middle of ties in spaces, from the Ties 1 page (read/write).

TieOutlineWidth Returns or sets the thickness of tie ends in spaces, from the Ties 1 page (read/write).

File
Retrievable using for each on a folder.

Methods
Delete() Deletes a file, returning True if successful.

Rename(newFileName) Renames a file, returning True if successful.

Variables
CreationDate Returns the file’s creation date and time as a DateTime object, in local time (read only).

CreationDateAndTime A string giving the date and time the file was last modified in GMT (read only).

ModificationDate Returns the file’s modification date and time as a DateTime object, in local time (read only).

Name The complete pathname of the file, no extension (read only).

NameWithExt The complete pathname of the file, with extension (read only).

NameNoPath Just the name of the file, no extension (read only).

Path Returns just the path to the file (read only).

Type A string giving the name of the type of the object; File for file objects (read only).

Folder
Retrievable from methods of the Sibelius object.

for each variable in produces the Sibelius files in the folder, as File objects

for each type variable in produces the files of type in the folder, where type is a Windows extension.

Useful values are SIB (Sibelius files), MID (MIDI files) or OPT (PhotoScore files), because they can all be opened directly by Sibelius.
On the Macintosh files of the corresponding Mac OS Type are also returned (so, for example, for each MID f will return all files
whose names end in .MID, and all files of type “Midi”).

Both these statements return subfolders recursively.
 Object Reference 53

Methods
FileCount(Type) Returns the number of files of type Type in the folder. As above, useful values are SIB, MID, or OPT.

Variables
FileCount The number of Sibelius files in the folder (read only).

FileCountAllTypes The number of files of all types in the folder (read only).

Name The name of the folder (read only).

Type A string giving the name of the type of the object; Folder for folder objects (read only).

GuitarFrame
Derived from a BarObject. This refers to chord symbols as created by Create > Chord Symbol, whether or not they show a guitar
chord diagram (guitar frame), but is called GuitarFrame in ManuScript for historical reasons.

Methods
CopyOutSuffixes() Returns an array containing a list of the suffix elements present in the chord. If the chord symbol is an
unrecognised chord type, the array returned will be empty. The values that can be returned in the array are as follows:

halfdim dim
add6/9 6/9
sus2/4 aug
omit5 alt
omit3 b13
maj13 #11
add13 13
maj11 11
dim13 #9
dim11 b9
maj9 b6
add9 #5
maj7 b5
dim9 #4
dim7 nc
sus9 9
sus4 7
add4 6
sus2 5
add2 m
maj /

GetChromaticPitchesOfChordInClosePosition(consider root) Returns an array containing the chromatic pitches of the
notes in the chord, assuming a voicing in close position. If consider root is True (it defaults to False), the pitches returned will be offset
according to the chromatic value of the root note on which the chord is based.

GetEndStringForNthBarre(barreNum) Returns the string number on which the nth barré ends.

GetPitchOfNthString(stringNum)] Returns the pitch of the given (open) string stringNum, as a MIDI pitch.

GetPositionOfFingerForNthBarre(barreNum) Returns the fret position that the nth barré occupies.

GetPositionOfFingerOnNthString(stringNum) Returns the position of the black dot representing the finger position on a
given string stringNum, relative to the top of the frame. A return value of 0 means the string is open (that is a hollow circle appears at
the top of the diagram), and -1 means that the string is not played (that is an X appears at the top of the diagram). Used in conjunction
with GetPitchOfNthString(), you can calculate the resulting pitch of each string.

GetStartStringForNthBarre(barreNum) Returns the string number from which the nth barré begins.
 Object Reference 54

IsNthStringPartOfBarre(stringNum) Returns True if the given string is part of a barré.

NthStringHasClosedMarkingAtNut(nth string) Returns True if there’s an X marking at the top or left of the specified string.

NthStringHasOpenMarkingAtNut(nth string) Returns True if there’s an O marking at the top or left of the specified string.

Variables
BassAsString The note name of the chord symbol’s altered bass note (for example: “F”).

ChordNameAsStyledString The name of the chord represented by this chord symbol as it appears in the score, for example:
“Cm7” (read only).

ChordNameAsPlainText The name of the chord represented by this chord symbol as it appears when editing the chord symbol, so
that in its plain text representation, for example: “Cmmaj7” (read only).

ChromaticRoot The chromatic pitch (C = 0, B = 11) of the chord symbol’s root note (read only).

ChromaticBass The chromatic pitch (C = 0, B = 11) of the chord symbol’s altered bass note (read only).

DiatonicRoot The diatonic pitch, that is the number of the “note name” to which this note corresponds, 7 per octave (0 = C, 1 = D,
2 = E and so on), of the chord symbol’s root note (read only).

DiatonicBass The diatonic pitch, that is the number of the “note name” to which this note corresponds, 7 per octave (0 = C, 1 = D,
2 = E and so on), of the chord symbol’s altered bass note (read only).

Fingerings The fingerings string for this chord. This is a textual string with as many characters as the guitar frame has strings (for
example, six for standard guitars). Each character corresponds to a guitar string. Use to denote that a string has no fingering.

FrameIsVisible True if the chord symbol is currently showing a guitar chord diagram (read only).

Horizontal True if the guitar chord diagram is horizontally orientated, False if it is vertically orientated (read/write).

LowestVisibleFret The number of the top fret shown in the guitar chord diagram; setting the special value -1 resets the lowest
visible fret to the default for that chord diagram (read/write).

NumBarresInChord The number of unique barrés in the guitar chord diagram (read only).

NumberOfFrets The number of frets in the guitar chord diagram, that is the number of horizontal lines; setting the special value -1
resets the number of frets to the default for that chord diagram (read/write).

NumberOfStrings The number of strings in the guitar chord diagram, for example,. the number of vertical lines (read only).

NumPitchesInClosePosition The number of unique pitches in the chord, assuming a voicing in close position with no dupli-
cates.

Recognized Returns True if the chord symbol is a specific recognized chord type, and False otherwise, that is if the chord symbol
is shown in red in the score because Sibelius is unable to parse the user’s input (read only).

RootAsString The note name of the chord symbol’s root (for example, “C#”).

ScaleFactor The scale factor of the guitar chord diagram (as adjustable via the Scale parameter on the General panel of Properties),
expressed as a percentage (read/write).

ShowFingerings Set to True if the fingerings string should be displayed, False otherwise (read only).

SuffixText The suffix part of the chord symbol as it appears in the score, or an empty string if the chord isn’t recognized (read only).

TextIsVisible True if the chord symbol is currently showing a text chord symbol (read only).

TransposingChromaticRoot Returns the chromatic pitch of the root note for the specified chord symbol as if the score is shown
at transposed pitch, but regardless of whether or not Notes > Transposing Score is enabled.

TransposingChromaticBass Returns the chromatic pitch of the altered bass note for the specified chord symbol, if present, as if
the score is shown at transposed pitch, but regardless of whether or not Notes > Transposing Score is enabled.

TransposingDiatonicRoot Returns the diatonic pitch of the root note for the specified chord symbol as if the score is shown at
transposed pitch, but regardless of whether or not Notes > Transposing Score is enabled.
 Object Reference 55

TransposingDiatonicBass Returns the diatonic pitch of the altered bass note for the specified chord symbol, if present, as if the
score is shown at transposed pitch, but regardless of whether or not Notes > Transposing Score is enabled.

TransposingRootAsString Returns a string representing the pitch of the root note for the specified chord symbol as if the score
is shown at transposed pitch, but regardless of whether or not Notes > Transposing Score is enabled.

TransposingBassAsString Returns a string representing the pitch of the altered bass note for the specified chord symbol, if pres-
ent, as if the score is shown at transposed pitch, but regardless of whether or not Notes > Transposing Score is enabled.

VisibleComponents The visible parts of the chord symbol, that is whether it displays a text chord symbol only (TextOnly), a gui-
tar chord diagram only (FrameOnly), both a text chord symbol and a guitar chord diagram (FrameAndText), or whether or not the
chord symbol shows a guitar chord diagram based on the type of instrument to which it is attached
(InstrumentDependent) (read/write).

GuitarScaleDiagram
Derived from a BarObject. This refers to guitar scale diagrams as created by Create > Guitar Scale Diagram.

Methods
GetDotFingeringsOnNthString(nth string) Returns an array of strings containing the text that has been entered on the dots on
a given string.

GetDotSymbolsOnNthString(nth string) Returns an array of values describing the appearance of each of the dots on a given
string. The possible values are DotStyleCircle, DotStyleFilledCircle, DotStyleSquare, DotStyleFilledSquare,
DotStyleDiamond, and DotStyleFilledDiamond.

GetPitchesOfDotsOnNthString(nth string) Returns an array containing the pitches of all the dots on a given string, in ascend-
ing order of pitch.

GetPitchOfNthString(stringNum) Returns the pitch of the given (open) string stringNum, as a MIDI pitch.

Variables
Fingerings The fingerings string for this scale diagram. This is a textual string with as many characters as the scale diagram has
strings (for example, six for standard guitars). Each character corresponds to a guitar string. Use – to denote that a string has no finger-
ing.

Horizontal True if the guitar scale diagram is horizontally orientated, False if it is vertically orientated (read/write).

LowestVisibleFret The number of the top fret shown in the guitar scale diagram; setting the special value -1 resets the lowest vis-
ible fret to the default for that scale diagram (read/write).

NumberOfFrets The number of frets in the guitar scale diagram, for example, the number of horizontal lines; setting the special
value -1 resets the number of frets to the default for that scale diagram (read/write).

NumberOfStrings The number of strings in the guitar scale diagram, for example, the number of vertical lines (read only).

Root Returns the chromatic pitch (C = 0) of the scale’s root note (read only).

ScaleFactor The scale factor of the guitar scale diagram (as adjustable via the Scale parameter on the General panel of Properties),
expressed as a percentage (read/write).

ScaleType Returns the type of the guitar scale diagram, as specified in the list of GuitarScaleDiagram Type Values (read only).

ShowFingerings Set to True if the fingerings string should be displayed, False otherwise (read only).
 Object Reference 56

HitPointList
Retrievable as the HitPoints variable of a score. It can be used in a for each loop or as an array with the [n] operator—this gives
access to a HitPoint object. The HitPoint objects are stored in time order, so be careful if you remove or modify the time of the
objects inside a loop. If you want to change the times of all the hit points by the same value then use the ShiftTimes function.

Methods
Clear() Removes all hit points from the score.

CreateHitPoint(timeMs,label) Creates a hit point in the score at the given time (specified in milliseconds) with a specified string
label. Returns the index in the HitPointList at which the new hit point was created.

Remove(index) Removes the given hit point number.

ShiftTimes(timeMs) Adds the given time (in milliseconds) onto all the hit points. If the time is negative then this is subtracted from
all the hit points.

Variables
NumChildren Number of hit points (read only).

HitPoint
Individual element of the HitPointList object.

Methods
None.

Variables
Bar The bar in which this hit point occurs (read only).

Label The name of the hit point (read/write).

Position The position within the bar at which this hit point occurs (read only).

Time The time of the hit point in milliseconds. Note that changing this value may change the position of the hit point in the HitPointList
(read/write).

InstrumentChange
Derived from a BarObject. Provides information about any instrument changes that may exist in the score.

Methods
None.

Variables
FullInstrumentName Returns the full instrument name associated with this instrument change (read/write).

FullInstrumentNameWithFormatting Returns the full instrument name associated with this instrument change including any
changes of font or style, if any (read/write).

FullStaffName Returns the full staff name associated with this instrument change (read/write).

FullStaffNameWithFormatting Returns the full staff name associated with this instrument change including any changes of
font or style, if any (read/write).
 Object Reference 57

ShortInstrumentName Returns the short instrument name associated with this instrument change (read/write).

ShortInstrumentNameWithFormatting Returns the short instrument name associated with this instrument change including
any changes of font or style, if any (read/write).

ShortStaffName Returns the short staff name associated with this instrument change (read/write).

ShortStaffNameWithFormatting Returns the short staff name associated with this instrument change including any changes of
font or style, if any (read/write).

StyleIdword Returns the style ID of the new instrument; see Instrument Types (read only).

TextLabel Returns the text that appears above the staff containing the instrument change in the score (read only).

InstrumentTypeList
Contains a list of InstrumentType objects common to a given score.

for each type variable in returns each instrument type in the list, in alphabetical order by the instrument type’s style ID.

Array access [int n] returns the nth instrument type, in the same order as using a for each iterator, or null if the instrument type does
not exist.

Methods
None.

Variables
NumChildren Returns the number of unique instrument types in the list (read only).

InstrumentType
Provides information about an individual instrument type.

Methods
Clone() Makes an exact copy of an existing instrument type.

PitchOfNthString(string num) Returns the pitch of a given string in a tablature staff, with string number 0 being the lowest string
on the instrument.

Variables
Balance Returns the instrument’s default balance, in the range 0–100 (read only).

Category Returns an index representing the category of the staff type belonging to this instrument type; 0 = pitched; 1 = percussion;
2 = tablature (read only).

ChromaticTransposition Returns the number of half-steps (semitones) describing the transposition of transposing instruments;
such as for B-flat Clarinet, this returns -2 (read/write).

ChromaticTranspositionInScore Returns the number of half-steps (semitones) describing the transposition of transposing in-
struments in a score shown at concert pitch. Typically this is only used by instruments that transpose by octaves, so this will return, for
example, 12 for piccolo or –12 for guitars (read only).

ComfortableRangeHigh Returns the highest comfortable note (MIDI pitch) of the instrument (read only).

ComfortableRangeLow Returns the lowest comfortable note (MIDI pitch) of the instrument (read only).

ConcertClefStyleId Returns the style ID of the normal clef style of the instrument (read only).

DefaultSoundId Returns the default sound ID used by the instrument (read only).
 Object Reference 58

DiatonicTransposition Returns the number of diatonic steps describing the transposition of transposing instruments; such as for
B-flat Clarinet, this returns -1 (read/write).

DiatonicTranspositionInScore Returns the number of diatonic steps describing the transposition of transposing instruments
in a score shown at concert pitch (read only).

DialogName Returns the name of the instrument as displayed in the Create > Instruments dialog in Sibelius (read/write).

FullName Returns the name of the instrument as visible on systems showing full instrument names (read only).

HasBracket Returns True if the instrument has a bracket (read only).

HasKeySignatureOrTuning Returns True if the instrument type has the Key signature / Tuning checkbox switched on in the Edit
Staff Type dialog.

InstrumentTypeForChordDiagrams Returns the style ID of the tab instrument type that determines the tuning used for chord
diagrams shown for this instrument, that is corresponding to the Tab instrument to use for string tunings in the New/Edit Instrument
dialogs.

IsVocal Returns True if the instrument type used has the Vocal staff option switched on, meaning that, for example, the default po-
sitions of dynamics should be above the staff rather than below (read only).

NumStaveLines Returns the number of staff lines in the staff (read only).

NumStrings Returns the number of strings in a tablature staff (read only).

OtherClefStyleId Returns the style ID of the clef style of the second staff of grand staff instruments, piano for example (read
only).

Pan Returns the instrument’s default pan setting, in the range –127 (hard left) to 127 (hard right) (read only).

ProfessionalRangeHigh Returns the highest playable note (MIDI pitch) of the instrument for a professional player (read only).

ProfessionalRangeLow Returns the lowest playable note (MIDI pitch) of the instrument for a professional player (read only).

ShortName Returns the name of the instrument as visible on systems showing short instrument names (read only).

StyleId Returns the style ID of the instrument; see Global Constants (read only).

TransposingClefStyleId Returns the style ID of the clef to be used when Notes > Transposing Score is enabled (read only).

KeySignature
Derived from a BarObject.

Methods
None.

Variables
AsText The name of the key signature as a string (read only).

IsOneStaffOnly True if this key signature belongs to one staff only (read only).

Major True if this key signature is a major key (read only).

Sharps The number of sharps (positive) or flats (negative) in this key signature (read only).
 Object Reference 59

Line
Anything you can create from the Create > Line dialog is a Line object, such as CrescendoLine, DiminuendoLine, and so on.
These objects are derived from a BarObject.

Methods
None.

Variables
Duration The total duration of the line, in 1/256th quarters (read/write).

EndBarNumber The bar number in which the line ends (read only).

EndPosition The position within the final bar at which the line ends (read only).

RhDx The horizontal graphic offset of the right-hand side of the line, in units of 1/32 spaces (read/write).

RhDy The vertical graphic offset of the right-hand side of the line from the center staff line, in units of 1/32 spaces, positive going up-
wards (read/write).

StyleId The identifier of the line style associated with this line (read only).

StyleAsText The name of the line style associated with this line (read only).

LyricItem
Derived from a BarObject

Methods
None.

Variables
Duration The total duration of the lyric line, in 1/256th quarters (see Line) (read/write).

NumNotes Gives the number of notes occupied by this lyric item (read/write). Note that changing this value will not automatically
change the length of the lyric line; you also need to set the lyric line’s Duration variable to the correct length.

StyleAsText The text style name (read/write).

StyleId he identifier of the text style of this lyric (read/write).

SyllableType An integer indicating whether the lyric is the end of a word (EndOfWord) or the start or middle of one (MiddleOf-
Word) (read/write). This affects how the lyric is jusitifed, and the appearance of hyphens that follow it. EndOfWord and MiddleOf-
Word are global constants; see SyllableTypes for LyricItems.

Text The text as a string (read/write).
 Object Reference 60

NoteRest
Derived from a BarObject. A NoteRest contains Note objects, stored in order of increasing diatonic pitch.

for each variable in returns the notes in the NoteRest.

Methods
AddAcciaccaturaBefore(sounding pitch,[duration[,tied [,voice [,diatonic pitch[,string number[,
force stem dir]]]]]]) Adds a grace note with a slash on its stem (acciaccatura) before a given NoteRest. The duration should be speci-
fied as normal, for example, 128 would create a grace note with one beam/flag. The optional tied parameter should be True if you want
the note to be tied. Voice 1 is assumed unless the optional voice parameter (with a value of 1, 2, 3 or 4) is specified. If force stem dir is
set to True (the default), stems of graces notes in voices 1 and 3 will always point upwards, and stems of notes in voices 2 and 4, down-
wards. You can also set the diatonic pitch, that is the number of the “note name” to which this note corresponds, 7 per octave (35 = mid-
dle C, 36 = D, 37 = E and so on). If a diatonic pitch of zero is given then a suitable diatonic pitch will be calculated from the MIDI pitch.
The optional string number parameter gives a string number for this note, which is only meaningful if the note is on a tablature stave.
If this parameter is not supplied then a default string number is calculated based on the current tablature stave type and the guitar tab fin-
gering options (specified on the Note Input page of File > Preferences). Returns the Note object created (to get the NoteRest contain-
ing the note, use Note.ParentNoteRest).

Note that adding a grace note before a NoteRest will always create an additional grace note, just to the left of the note/rest to which it
is attached. If you wish to create grace notes with more than one pitch, you should call AddNote on the object returned.

AddAppoggiaturaBefore(sounding pitch,[duration[,tied [,voice [,diatonic pitch[,string number[,force stem dir]]]]]])

Identical to AddAcciaccaturaBefore, only no slash is added to the note’s stem.

AddNote(pitch[,tied[,diatonic pitch[,string number]]]) Adds a note with the given MIDI pitch (60 = middle C), for example to cre-
ate a chord. The optional second parameter specifies whether or not this note is tied (True or False). The optional third parameter gives
a diatonic pitch, which is the number of the ‘note name’ to which this note corresponds, 7 per octave (35 = middle C, 36 = D, 37 = E
etc.). If this parameter is 0 then a default diatonic pitch will be calculated from the MIDI pitch. The optional fourth parameter gives a
string number for this note, which is only meaningful if the note is on a tablature stave. If this parameter is not supplied then a default
string number is calculated based on the current tablature stave type and the guitar tab fingering options (specified on the Notes page
of File > Preferences). Returns the Note object created.

Delete() Deletes all the notes in the NoteRest, converting the entire chord into a rest of similar duration.

FlipStem() Flips the stem of this NoteRest—this acts as a toggle.

GetArticulation(articulation number) Returns True or False depending on whether the given articulation is currently set on
this note. The valid articulation numbers are defined in Articulations.

NoteRest[array element] Returns the nth note in the chord, in order of increasing diatonic pitch (counting from 0). For example,
NoteRest[0] returns the lowest note (in terms of diatonic pitch—see AddNote below).

RemoveNote(note) Removes the specified Note object.

SetArticulation(articulation number,set) If set is True, turns on the given articulation; otherwise turns it off. The valid articu-
lation numbers are defined in Articulations.

Transpose(degree, interval type[,keep double accs]) Transposes the entire NoteRest up or down by a specified degree and interval
type. To transpose up, use positive values for degree; to transpose down, use negative values. Note that degrees are 0-based, so 0 is equal
to a unison, 1 to a second and so on. For descriptions of the various available interval types, see Global Constants. By default, Sibelius
will transpose using double sharps and flats where necessary, but this behavior may be suppressed by setting the keep double accs flag
to False.

For help in calculating the interval and degree required for a particular transposition, see the documentation for the Sibelius.Cal-
culateInterval and Sibelius.CalculateDegree methods.
 Object Reference 61

Variables
ArpeggioDx The horizontal offset of the arpeggio line on the NoteRest (read/write), in units of 1/32nd of a space (the distance be-
tween two adjacent staff lines).

ArpeggioType The type of note-attached arpeggio line present on the NoteRest. Values are ArpeggioTypeNone, Arpeggio-
TypeNormal, ArpeggioTypeUp, ArpeggioTypeDown (read/write).

ArpeggioTopDy The vertical offset of the top of the note-attached arpeggio line on the NoteRest (read/write), in units of 1/32nd of
a space.

ArpeggioBottomDy The vertical offset of the bottom of the note-attached arpeggio line on the NoteRest (read/write), in units of
1/32nd of a space.

ArpeggioHidden Returns True if the note-attached arpeggio line on the NoteRest is hidden (read/write).

Articulations Lets you copy a set of articulations from one NoteRest to another (read/write), for example:
destNr.Articulations = sourceNr.Articulations;

Beam Takes values StartBeam, ContinueBeam, NoBeam and SingleBeam. (see Global Constants for details). These corre-
spond to the keys 7, 8, * (/ on Mac) and / (* on Mac) on the third (F9) Keypad layout.

CrossStaff Returns the following values pertaining to cross-staff beaming: 0 (Not Crossed), 1 (Crossed Above), 2 (Crossed Below).
If cross-staff beaming has been applied to a note, but there is no staff available above or below the original staff, CrossStaff returns
–1 (Crossed Above, No Upper Staff) or –2 (Crossed Below, No Lower Staff).

DoubleTremolos Gives the number of double tremolo strokes starting at this note, in the range 0–7. Means nothing for rests. To cre-
ate a double tremolo between two successive notes, ensure they have the same duration and set the DoubleTremolos of the first one
(read/write).

Duration The duration of the note rest (read only).

FallDx The horizontal offset of a fall, if present on the NoteRest (read/write), in units of 1/32nd of a space.

FallType The type of note-attached fall present on the NoteRest. Values are FallTypeNone, FallTypeNormal and FallType-
Doit (read/write)

FeatheredBeamType Returns one of three values, based on whether a note is set to produce a feathered beam. Values are Feath-
eredBeamNone (0), FeatheredBeamAccel (1) and FeatheredBeamRit (2) (read/write).

GraceNote True if it’s a grace note (read only).

HasStemlet Returns True if the note is showing a stemlet, according either to the state of the Use stemlets on beamed rests option
on the Beams and Stems page of Engraving Rules or the stemlet button on the Keypad (read only).

Highest The highest Note object in the chord (read only).

IsAcciaccatura True if it’s an acciaccatura, that is. a grace note with a slash through its stem (read only).

IsAppoggiatura True if it’s an appoggiatura, that is a grace note without a slash through its stem (read only).

Lowest The lowest Note object in the chord (read only).

NoteCount The number of notes in the chord (read only).

ParentTupletIfAny If the NoteRest intersects a tuplet, the innermost Tuplet object at that point in the score is returned. Other-
wise, null is returned (read only).

PositionInTuplet Returns the position of the NoteRest relative to the duration and scale-factor of its parent tuplet. If the NoteRest
does not intersect a tuplet, its position within the parent Bar is returned as usual (read only).

RestPosition The vertical position of a rest (read/write).

ScoopDx The horizontal offset of a scoop or plop, if present on the NoteRest (read/write), in units of 1/32nd of a space.

ScoopType The type of note-attached scoop present on the NoteRest. Values are ScoopTypeNone, ScoopTypeNormal, Scoop-
TypePlop (read/write).
 Object Reference 62

StemFlipped True if the stem is flipped (read only).

StemletType Provides information about whether the NoteRest is set to display a stemlet using the options on the Keypad. Returns
either StemletCustomOff (in which case the NoteRest definitely does not show a stemlet), StemletCustomOn (in which case the
NoteRest definitely does show a stemlet), or StemletUseDefault (in which case you should use the read-only variable HasStem-
let to determine whether the NoteRest currently shows a stemlet) (read/write).

Stemweight Returns the stem weight of a note, taking beams into account (read only). For an unbeamed note, this is the sum of the
stave positions of all the notes in the NoteRest, where the stave position of the middle line is zero and the position increases as you move
up the stave and decreases as you move downwards. For a beamed note, it is the sum of all the stem weights of the NoteRests under the
beam (treated as though they were unbeamed).

There are some special cases. If a note has its stem direction forced due to voicing, then the stem weight will be one of the global con-
stants StemweightUp or StemweightDown. If a note has its stem direction forced due to the “flip” flag being set, the stem weight
will be either StemweightFlipUp or StemweightFlipDown.

If the stem weight is less than zero, the stem will point up, otherwise it will point down.

SingleTremolos Gives the number of tremolo strokes on the stem of this note, in the range –1 (for “z on stem”) to 7. Means nothing
for rests (read/write).

Note
Only found in NoteRests. Correspond to individual noteheads.

Methods
Delete() Removes a single note from a chord.

Transpose(degree, interval type[,keep double accs]) Transposes and returns a single Note object up or down by a specified degree
and interval type*. To transpose up, use positive values for degree; to transpose down, use negative values. Note that degrees are
0-based, so 0 is equal to a unison, 1 to a second and so on. For descriptions of the various available interval types, see Global Con-
stants. By default, Sibelius will transpose using double sharps and flats where necessary, but this behavior may be suppressed by setting
the keep double accs flag to False. For help in calculating the interval and degree required for a particular transposition, see the docu-
mentation for the Sibelius.CalculateInterval and Sibelius.CalculateDegree methods.

Variables
Accidental The accidental, for which global constants such as Sharp, Flat and so on are defined; see Global Constants (read
only).

AccidentalStyle The style of the accidental (read/write). This can be any of following four global constants: NormalAcc,
HiddenAcc, CautionaryAcc (which forces an accidental to appear always) and BracketedAcc (which forces the accidental to
be drawn inside brackets).

Bracketed The bracketed state of the note, as shown on the F9 layout of the Keypad (read/write).

Color The color of this Note (read/write). The color value is in 24-bit RGB format, with bits 0–7 representing blue, bits 8–15 green,
bits 16–23 red and bits 24–31 ignored. Since ManuScript has no bitwise arithmetic, these values can be a little hard to manipulate; you
may find the individual accessors for the red, green and blue components to be more useful (see below).

ColorAlpha The alpha channel component of the color of this Note, in the range 0–255 (read/write).

ColorRed The red component of the color of this Note, in the range 0–255 (read/write).

ColorGreen The green component of the color of this Note, in the range 0–255 (read/write).

Individual note objects cannot be transposed diatonically.

When all Notes in a given NoteRest are the same color, then that color is also promoted to the parent NoteRest itself. This allows
backwards compatibility with versions of Sibelius prior to 8.3 that did not support the individual coloring of Notes. Coloring of
NoteRest-attached objects, such as articulations and rhythm dots is not supported.
 Object Reference 63

ColorBlue The blue component of the color of this Note, in the range 0–255 (read/write).

DiatonicPitch The diatonic pitch of the note, that is the number of the “note name” to which this note corresponds, 7 per octave
(35 = middle C, 36 = D, 37 = E and so on). (read/write)

IsAccidentalVisible Returns True if the accidental on the note is visible, which is the equivalent of whether or not the corre-
sponding button on the Keypad is illuminated for that note (read only).

LvTie Is True if the note has an L.V. tie (read/write).

Name The pitch of the note as a string (read only).

NoteStyle The index of the notehead style of this Note (read/write). The styles correspond to those accessible from the Notes panel
of the Properties window in Sibelius; see Note Style Names for a complete list of the defined NoteStyles.

NoteStyleName The name of the notehead style of this Note (read/write). If an attempt is made to apply a non-existent style name,
the note in question will retain its current notehead.

OriginalDeltaSr The Live start position of this notehead (in 1/256th quarters), as shown in the Playback panel of Properties
(read/write). This value can be positive or negative, indicating that the note is moved forwards or backwards.

OriginalDuration The Live duration of this notehead (in 1/256th quarters), as shown in the Playback panel of Properties
(read/write).

OriginalVelocity The Live velocity of this notehead (in MIDI volume units, 0–127), as shown in the Playback panel of Properties
(read/write). Note that the word “original” refers to the fact that this data is preserved from the original performance if the score was im-
ported from a MIDI file or input via Flexi-time. For further details on this value, and the ones following below, read the Live Playback
section in Sibelius Reference.

ParentNoteRest The NoteRest object that holds this note (read only).

Pitch The MIDI pitch of the note, in semitones, 60 = middle C (read only).

Slide Is True if the note has a slide, False otherwise (read/write).

SlideStyleId The slide line style state of the note, allowing you to attach/detach glissandi and other lines to a note (read/write).

The following Line styles are available by default (as seen in the Inspector):
line.staff.gliss.straight
line.staff.gliss.wavy
line.staff.plain
line.staff.port.straight

You can define and assign additional custom Line styles not based on the available default Line styles. For example:
// Add/set a note slide style
note.SlideStyleId = "line.staff.gliss.straight";
// Log a note slide style to the plug-in trace window
Trace(note.SlideStyleId);
// Using a custom line style
note.SlideStyleId = "line.staff.gliss.straight.user.0000001";

StringNum The string number of this note, only defined if the note is on a tablature stave. If no string is specified, reading this value
will give –1. Strings are numbered starting at 0 for the bottom string and increasing upwards (read only).

Tied Is True if the note is tied to the following note (read/write).

TiedInto Is True if the note has a tie-into object attached to the left-hand side of the note (read/write).

TieIntoStyle The name of the tie-into object’s style for this Note (read/write). Valid tie-into style names include: Solid, Dashed,
Dotted. If an attempt is made to apply a non-existent style name, the tie-into object in question retains its current style.

If Note.DiatonicPitch is changed from the full score (not a dynamic part), the written pitch and spelling of any accidental is changed
in both the full score and the part (where there is no difference in spelling). If changed from a part, Sibelius respells any accidental
in the part only, leaving the full score unchanged. In both cases, while there may be a difference in written pitch, Sibelius guarantees
that there is never a difference in the sounding pitch of a note between a part and the full score.
 Object Reference 64

TieStyle The name of the tie style for this Note (read/write). Valid tie style names include: Solid, Dashed, Dotted. If an attempt is
made to apply a non-existent style name, the tie in question retains its current style.

WrittenAccidental The accidental, taking transposition into account (read only).

WrittenDiatonicPitch The written diatonic pitch of the note, taking transposition into account if Score.TransposingScore
is True (35 = middle C).

WrittenName The written pitch of the note as a string (taking transposition into account) (read only).

WrittenPitch The written MIDI pitch of the note, taking transposition into account if Score.TransposingScore is True (60
= middle C) (read only).

UseOriginalDeltaSrForPlayback Is True if the Live start position of this Note should be used for Live Playback. Corre-
sponds to the Live start position checkbox in the Playback panel of the Properties window.

UseOriginalDurationForPlayback Is True if the Live duration of this Note should be used for Live Playback. Corresponds
to the Live duration checkbox in the Playback panel of the Properties window.

UseOriginalVelocityForPlayback Is True if the Live velocity of this Note should be used for Live Playback. Corresponds to
the Live velocity checkbox in the Playback panel of the Properties window.

NoteSpacingRule
Provides access to the settings from the Appearance > House Style > Note Spacing Rule dialog. Obtained by way of the Score ob-
ject, for example:

nsr = Sibelius.ActiveScore.NoteSpacingRule;

Methods
None.

Variables
The following variables are listed in the same order as the options to which they correspond in the Note Spacing Rule dialog.

FixedBarRestWidth The width of an empty bar if the Fixed empty bar width n spaces radio button is chosen (read/write). This
value is only used if DetermineEmptyBarWidthBySrLength is False.

DetermineEmptyBarWidthBySrLength Returns True if Empty bar width is determined by time signature is chosen, otherwise
False (read/write).

StartOfBarGap The value of Before first note in bar n spaces (read/write).

MinimumDurationSpace The value of Short notes n spaces (read/write).

SpaceForSixteenth The value of 16th note (semiquaver) n spaces (read/write).

SpaceForEighth The value of 8th note (quaver) n spaces (read/write).

SpaceForQuarter The value of Quarter note (crotchet) n spaces (read/write).

SpaceForHalf The value of Half note (minim) n spaces (read/write).

SpaceForWhole The value of Whole note (semibreve) n spaces (read/write).

SpaceForDoubleWhole The value of Double whole note (breve) n spaces (read/write).

AllowSpaceForVoiceConflicts Returns True if Allow extra space for colliding voices is enabled, otherwise False
(read/write).

SpaceAroundGraceNote The value of Space around grace notes n spaces (read/write).

ExtraSpaceAfterLastGraceNote The value of Extra space after last grace note n spaces (read/write).

IncludeChordSymbols Returns True if Allow space for chord symbols is enabled, otherwise False (read/write).
 Object Reference 65

ExtraSpaceBetweenGuitarFrames The value of Minimum gap between chord symbols n spaces (read/write).

MinSpaceAroundNote The value of Around noteheads (and dots) n spaces (read/write).

MinSpaceBeforeAccidental The value of Before accidentals n spaces (read/write).

MinSpaceBeforeArpeggio The value of Before arpeggio n spaces (read/write).

MinSpaceAfterHook The value of After tails with stems up n spaces (read/write).

MinSpaceAroundLegerLine The value of Around leger lines n spaces (read/write).

MinSpaceAtStartOfBar The value of After start of bar n spaces (read/write).

MinSpaceAtEndOfBar The value of Before end of bar n spaces (read/write).

MinTieSpacing The value of Min space (tie above/below note) n spaces (read/write).

MinTieSpacingChords The value of Min space (tie between notes) n spaces (read/write).

IncludeLyrics Returns True if Allow space for lyrics is enabled, otherwise False (read/write).

AllowFirstLyricOverhang Returns True if Allow first lyric to overhang barline is enabled, otherwise False (read/write).

AllowSpaceForHyphen Returns True if Allow extra space for hyphens is enabled, otherwise False (read/write).

SpaceBetweenLyrics The value of Minimum gap between lyrics n spaces (read/write).

PageNumberChange
Provides access to get and set the attributes of a page number change at the end of a bar or on a blank page.

Methods
SetFormatChangeOnly(format change only) If format change only is True, this has the same effect as switching off the New page
number check box on the Page Number Change dialog in Sibelius. The page numbering will therefore continue counting consecu-
tively, but it’s possible to (for example) hide a group of page numbers and restore visibility at a later point on the score without having
to keep track of the previous page numbers.

SetHideOrShow(page number visibility) Takes one of the three Page number visibility global constants to determine the visibility
of the initial page number change and its subsequent pages; see Global Constants.

SetPageNumber(page number) Takes an integral number specifying the new number you wish to assign to the page.

SetPageNumberFormat(format) Takes one of the four Page number format global constants to change the format used to display
the page number change; see Global Constants.

Variables
BarNumber Returns the bar number expressed as an integer (read only).

HideOrShow Returns one of the three Page number visibility global constants; see Global Constants (read only).

PageNumber Returns the page number expressed as an integer. For example, page x when using Roman numerals would be 10, or 24
with alphabetics (read only).

PageNumberAsString Returns the page number change as visible on the corresponding page in Sibelius (read only).
PageNumberBlankPageOffset

Returns the blank page offset of the page number change, or 0 if there are no blank pages following the bar containing the page number
change (read only).

PageNumberFormat Returns one of four Page number format global constants describing the format of the page number change;
see Global Constants (read only).
 Object Reference 66

PluginList
An array that is obtained from Sibelius.Plugins. It can be used in a for each loop or as an array with the [n] operator to access
each Plugin object.

Methods

Contains(pluginName) Returns True if a plug-in with the given name is installed. This can be used to query whether a plug-in is
installed before you try to call it.

Variables
NumChildren Number of plug-ins (read only).

Plugin
This represents an installed plug-in. Typical usage:

for each p in Sibelius.Plugins
{

trace("Plugin: " & p.Name);
}

Methods
The following methods are intended to allow you to check the existence of specific methods, data and dialogs in plug-ins, which allows
you to check in advance that calling a method in another plug-in will succeed, and fail gracefully if the method is not found:

MethodExists(method) Returns True if the specified method exists in the current Plugin object.

DataExists(data) Returns True if the specified data exists in the current Plugin object.

DialogExists(dialog) Returns True if the specified dialog exists in the current Plugin object.

Variables
File The File object corresponding to the file that the plug-in was loaded from (read only).

Name The name of the plug-in (read only).

RehearsalMark
Derived from a BarObject and found in the system staff only. RehearsalMarks have an internal numbering and a visible text repre-
sentation, both of which can be read from ManuScript.

Methods
None.

Variables
Mark The internal number of this rehearsal mark. By default rehearsal marks are consecutive (with the first one numbered zero), but
the user can also create marks with specific numbers.

MarkAsText The textual representation of this rehearsal mark as drawn in the score. This is determined by the House Style > En-
graving Rules options, and can take various forms (numerical or alphabetical).
 Object Reference 67

Score
You can obtain the Score object by way of the Sibelius object, for example:

score = Sibelius.ActiveScore;

A Score contains one System Staff and one or more Staff objects.

for each variable in returns each staff in the score or the current dynamic part in turn (not the system staff).

for each type variable in returns the objects in the score in chronological order, from the top staff to the bottom staff (for simulta-
neous objects) and then from left to right (again, not including the system staff).

Methods
AddBars(n) Adds n bars to the end of the score.

ApplyStyle(style file,"style",["style"]) Imports named styles from the given house style file (.lib) into the score. The style file pa-
rameter can either be a full path to the file, or just the name of one of the styles that appears in the House Style > Import House Style
dialog. You can import as many “style” elements as you like in the same method. Style names are as follows:

ENGRAVING RULES, DOCSETUP, HOUSE, TEXT, SYMBOLS, LINES, NOTEHEADS, CLEFS, DICTIONARY,
SPACINGRULE, DEFAULTPARTAPPEARANCE, INSTRUMENTSANDENSEMBLES, MAGNETICLAYOUTOPTIONS or
ALLSTYLES.

For instance:
score2.ApplyStyle("C:\NewStyle.lib", "HOUSE", "TEXT");

To import engraving rules for a a house style, but not the document settings, use the ENGRAVINGRULES constant. To import docu-
ment settings for a house style, but not the engraving rules, use the DOCSETUP constant. To import both the engraving rules and doc-
ument setup of a house style, use the HOUSE constant. Note that the constant HOUSE refers, for historical reasons, only to those op-
tions in the House Style > Engraving Rules and Layout > Document Setup dialogs, not the entire house style. To import the entire
House Style, use the ALLSTYLES constant. The constants: ENGRAVINGRULES, DOCSETUP, HOUSE, and ALLSTYLES are mu-
tually exclusive and should not be used in combination.

When importing Text Styles from a House Style, ApplyStyles() lets you import the “Music Text Font” using the TEXT Style name
(or any Style name that depends on TEXT).

ClefStyleId(clef style name) Returns the identifier of the clef style with the given name, or the empty string if there is no such clef
style.

CreateInstrument(style ID[,change names,["full name",["short name"]]]) Creates a new instrument, given the style ID of
the instrument type required (see Instrument Types). If you want to supply the instrument names to be used in the score, set the op-
tional change names parameter to True, then supply strings for the full name and short name. Returns True if the instrument was cre-
ated successfully and False if the instrument type could not be found.

CreateInstrumentAtBottom(style ID[,change names,["full name",["short name"]]]) Behaves the same way as Cre-
ateInstrument, only the new instrument is always created below all other instruments that currently exist in the score. This can be
useful when programmatically copying a list of staves/instruments from one score to another, as you can guarantee the ordering of the
staves will be the same in both scores.

CreateInstrumentAtBottomReturnStave(style ID[,change names,["full name",["short name"]]]) As above, but returns
the Staff object created, or null if unsuccessful.

CreateInstrumentAtTop(style ID[,change names,["full name",["short name"]]]) Behaves in exactly the same way as Cre-
ateInstrumentAtBottom, only the new instrument is always created above all other instruments that currently exist in the score.

CreateInstrumentAtTopReturnStave(style ID[,change names,["full name",["short name"]]]) As above, but returns the
Staff object created, or null if unsuccessful.

CreateInstrumentReturnStave(style ID[,change names,["full name",["short name"]]]) Like CreateInstrument, but
returns the Staff object created, or null if unsuccessful. Note that if the instrument being created contains more than one staff (such
as piano or harp), the top stave of the instrument in question will be returned.
 Object Reference 68

ExportHouseStyle(filename) Exports the house style of the score to either the default “House Style” folder (if the argument is a
filename), or to a user-specified path (if the argument is a valid file path).

ExportPartsAsPDF(filename[,single file[,part IDs[,include score]]]) Exports one dynamic part, a selection of dynamic parts, or
all dynamic parts in PDF format, either concatenated into a single file, or as separate files. The filename parameter should be a complete
path. It may contain the following tokens, which Sibelius will expand automatically to generate a complete filename:

%f = Score filename
%t = Score title (as specified in the Title field in File > Info)
%p = Part name (as specified in the Part name field in File > Info)
%n = Part number
%o = Total number of parts
%d = Date (format YYYY-MM-DD)
%h = Time (format HHMM)

The Boolean parameter single file specifies whether the chosen parts should be extracted into separate PDF files or concatenated into a
single PDF file. This parameter defaults to True if not specified.

To specify which parts to export, create a sparse array of part IDs, and pass this in as the third parameter, part IDs. For example:
s = Sibelius.ActiveScore;
partsToExport = CreateSparseArray();
parts = s.DynamicParts;
firstNPartsToExport = 2;
i = 0;
for each part in parts {
 if (i <= firstNPartsToExport) { // <= because the first "part" in the
 //DynamicPartsCollection is the full score.
 partsToExport.Push(part);
 }
 i = i + 1;
}
s.ExportPartsAsPDF("c:\\%f - %p.pdf", true, partsToExport);

To export all parts, pass in 0 instead of a sparse array.

The final optional Boolean parameter, include score, defaults to False. If set to True, the full score will also be exported along with
the parts.

ExportScoreAsPDF(filename) Exports the full score as a PDF, with the specified filename, which should be a complete path. The
filename parameter may use the same tokens as the ExportPartsAsPDF() method—see above.

ExtractParts([show_dialogs[,parts path[,open parts]]]) Extracts parts from the score. The first optional Boolean parameter can
be False, in which case the parts are extracted without showing an options dialog. The second optional parameter specifies a folder into
which to extract the parts (must end with a trailing folder separator). The third optional Boolean parameter, which defaults to True,
specifies whether the extracted parts should be opened immediately, or simply saved.

FreezeMagneticLayoutPositions() Does the same as selecting the whole score and choosing Layout > Magnetic Layout >
Freeze Positions, which explicitly sets the Dx/Dy of every object to the position produced by Magnetic Layout, then disables Magnetic
Layout for each object.

GetLocationTime(bar number[,position[,pass]]) Returns the time of a given bar (by passing in its bar number) and optional posi-
tion within that bar in the score in milliseconds. If the score contains repeats, the value returned will always be the time on the first pass
through the score, but you can supply the optional pass parameter to specify a particular pass in the repeat structure. If the bar and po-
sition are not valid, the return value will be -1.

GetVersions() Returns the score’s VersionHistory object (see VersionHistory).

HideEmptyStaves(startStaveNum,endStaveNum,startBarNum,endBarNum) Hides any empty staves between startStaveNum
and endStaveNum, from startBarNum to endBarNum. Both the staff numbers and bar numbers are 1-based, and refer to the active part.

GetVersions() Returns the score’s VersionHistory object (see VersionHistory).
 Object Reference 69

InsertBars(n,barNum[,length]) Inserts n bars before bar number barNum. If no length has been specified, the bar will be created
with the correct length according to the current time signature. However, irregular bars may also be created by specifying a value for
length.

InternalPageNumToExternalPageNum(pagenum) Returns a string containing the external page number of the given internal
page number pagenum.

LineStyleId(line style name) Returns the identifier of the line style with the given name, or the empty string if there is no such line
style.

NoteStyleIndex(notehead style name) Returns the index of the note style with the given name, or –1 if there is no such note style.

NthStaff(staff index from 1) Returns the nth staff of the score or the current dynamic part.

OptimizeStaffSpacing (from staff number[, to staff number[,from bar[,to bar]]]) Does the equivalent of Layout > Optimize
Staff Spacing for the given range of staves or a whole score. from staff number must be specified; if to staff number is not specified, Si-
belius will optimize the distances between from staff number and the bottom staff in the score; if from bar is not specified, Sibelius sets
it to 1; if to bar is not specified, Sibelius sets it to the last bar of the score.

PlayLiveTempo(play) Switches Play > Live Tempo on or off; set play to True to switch it on, or False to switch it off.

RemoveAllHighlights() Removes all highlights in this score.

RemoveVideo() Removes an attached video from the score.

RenameTextStyle("old name","new name") Renames a text style to a new name.

Save(filename) Saves the score, overwriting any previous file with the same name.

SaveAs(filename,type[,use_defaults,foldername]) Saves the score in a specified format, overwriting any previous file with the same
name. The optional argument use_defaults only applies to graphics files, and specifies whether or not the default settings are to be used.
When set to False, the Export Graphics dialog will appear and allow the user to make any necessary adjustments. The optional folder-
name specifies the folder in which the file is to be saved, and will create the specified folder if it does not exist. The foldername param-
eter must not end with a path separator (which is “\\” on Windows).

The possible values for type are:
SIBL Sibelius format (current version)
EMF EMF
BMP Windows bitmap
PICT PICT format
PDF PDF format
PNG PNG format
Midi MIDI format
TIFF TIFF format
MUSICXML Uncompressed MusicXML
MXL Compressed MusicXML

So, to save a file using the current Sibelius file format, you would write score.SaveAs(“filename.sib”, “SIBL”);

SaveAsAudio(filename[,include all staves[,play from start]]) Creates a WAV file (PC) or AIFF file (Mac) of the score, using Si-
belius’s File > Export > Audio feature. If include all staves is True (the default), Sibelius will first clear any existing selection from the
score so every instrument will be recorded; only selected staves will otherwise be exported. When play from start is True (also the de-
fault), Sibelius will record the entire score from beginning to end, otherwise from the current position of the playback line. Note that
SaveAsAudio will only have an effect if the user’s current playback configuration consists of solely VST and/or AU devices. The
functions returns True if successful, otherwise False (including if the user clicks Cancel during export).

SaveAsSibelius2(filename[,foldername]) Saves the score in Sibelius 2 format, overwriting any previous file with the same name.
The optional foldername specifies the folder in which the file is to be saved. Note that saving as Sibelius 2 may alter some aspects of
the score; see Sibelius Reference for full details.

SaveAsSibelius3(filename[,foldername]) Saves the score in Sibelius 3 format. See documentation for SaveAsSibelius2
above.

The file type value for Uncompressed musicXML files was formerly “XML" rather than "MUSICXML." XML still represents
a valid file type, but the file will be saved with a .musicxml extension.
 Object Reference 70

SaveAsSibelius4(filename[,foldername]) Saves the score in Sibelius 4 format. See documentation for SaveAsSibelius2
above.

SaveAsSibelius5(filename[,foldername]) Saves the score in Sibelius 5 format. See documentation for SaveAsSibelius2
above.

SaveAsSibelius6(filename[,foldername]) Saves the score in Sibelius 6 format. See documentation for SaveAsSibelius2
above.

SaveAsSibelius7(filename[,foldername]) Saves the score in Sibelius 7 format. See documentation for SaveAsSibelius2
above.

SaveAsSibelius7_5(filename[,foldername]) Saves the score in Sibelius 7.5 format. See documentation for SaveAsSibelius2
above.

SaveAsSibelius8(filename[,foldername]) Saves the score in Sibelius 8 format. See documentation for SaveAsSibelius2
above.

SaveAsSibelius8_5(filename[,foldername]) Saves the score in Sibelius 8.1 format. See documentation for SaveAsSibelius2
above.

SaveAsSibelius8_6(filename[,foldername]) Saves the score in Sibelius 8.6 format. See documentation for SaveAsSibelius2
above.

SaveAsSibelius2020_1(filename[,foldername]) Saves the score in Sibelius 2020.1 format. See documentation for SaveAsSi-
belius2 above.

SaveCopyAs(filename[,foldername]) Saves a copy of the score in the current version’s format without updating the existing score’s
file name in Sibelius.

SetPlaybackPos(bar number,sr) Sets the position of the playback line to a given bar number and rhythmic (sr) position.

ShowEmptyStaves(startStaveNum,endStaveNum,startBarNum,endBarNum) Shows any empty staves currently hidden using
Layout > Hiding Staves > Hide Empty Staves between startStaveNum and endStaveNum, from startBarNum to endBarNum. Both the
staff numbers and bar numbers are 1-based, and refer to the active part.

StaveTypeId(stave type name) Returns the identifier of the stave type with the given name, or the empty string if there is no such
stave type.

SystemCount(page num) The number of systems on a page (the first page of the score is page 1).

SymbolExists(symbol) Returns True if the symbol index or name symbol is found in the score, otherwise False.

SymbolIndex(symbol name) Returns the index of the symbol with the given name, or –1 if there is no such symbol.

TextStyleId(text style name) Returns the identifier of the text style with the given name, or the empty string if there is no such text
style.

ViewLiveTempo(view) Switches View > Live Tempo on or off; set view to True to switch it on, or False to switch it off.

Variables
Arranger Arranger of score from File > Score Info (read/write).

Artist Artist of score from File > Score Info (read/write)

Barlines Returns a Barlines object containing information about the barline groupings in the score (read only).

BarPlaybackOrder Returns a sparse array containing a list of integers that describes the order in which the bars will be played, ac-
cording to the repeat structure of the score or the settings in Play > Interpretation > Repeats. To set the order in which bars should be
played, pass in a sparse array containing a list of integers describing the order in which bars should be played back. To return to the
score’s automatically-determined playback order, pass in null (read/write).

BarPlaybackOrderString Returns a string describing the order in which the bars will be played, according to the repeat structure
of the score. The string uses the same format as the read-out in Play > Interpretation > Repeats, for example, “1–8,
1–5,9–12”. To set the order in which bars should be played, pass in a string of the appropriate format. To return the score’s
automatically-determined playback order, pass in null (read/write).
 Object Reference 71

BracketsAndBraces Returns a BracketsAndBraces object containing information about the brackets and braces in the score
(read only).

Composer Composer of score from File > Score Info (read/write).

ComposerDates Value of Composer’s dates from File > Score Info (read/write).

Copyist Copyist of score from File > Score Info (read/write).

Copyright Copyright of score from File > Score Info (read/write).

CurrentDynamicPart Returns or sets the current DynamicPart object for the Score (read/write). Sibelius will not automatically
display the new part: use Sibelius.ShowDynamicPart() to change the displayed part.

CurrentPlaybackPosBar Returns the bar number in which the playback line is currently located.

CurrentPlaybackPosSr Returns the rhythmic position within the bar at which the playback line is currently located.

Dedication Dedication of score from File > Score Info (read/write).

DocumentSetup Returns a DocumentSetup object representing the settings in Layout > Document Setup (read only).

DynamicParts Returns a DynamicPartCollection object representing the dynamic parts present in the Score. This object will
always stay up to date, even if parts are added or deleted (read only).

EditingLocked True when the score is locked, preventing unintentional edits (read/write).

EnableScorchPrinting Corresponds to the Allow printing and saving checkbox in the Export Scorch Web Page dialog
(read/write).

EngravingRules Returns an EngravingRules object corresponding to selected settings in the House Style> Engraving Rules
dialog (read only).

FileName The filename for the score (read only).

FocusOnStaves Is True if View > Focus on Staves is enabled (read/write). See also Staff.ShowInFocusOnStaves.

HitPoints The HitPointList object for the score (read/write).

InstrumentChanges Value of Instrument changes from File > Score Info (read/write).

InstrumentTypes Returns an InstrumentTypeList containing the score’s instrument types, on which one may execute a for
each loop to get information about each instrument type within the score.

IsDynamicPart Returns True if the current active score view is a part (read only).

LiveMode Is True (1) if Play > Live Playback is on (read/write).

Lyricist Lyricist of score from File > Score Info (read/write).

MagneticLayoutEnabled Returns True if the current score has Layout > Magnetic Layout switched on (read/write).

MainMusicFontName Returns the name of the font specified as the Main music font (such as “Opus” or “Reprise”) in House Style
>Edit All Fonts (read/write).

MainTextFontName Returns the name of the font specified as the Main text font (such as “Times New Roman” or “Arial”) in House
Style > Edit All Fonts (read/write).

MusicTextFontName Returns the name of the font specified as the Music text font (such as “Opus Text” or “Reprise Text”) in
House Style > Edit All Fonts (read/write).

NumberOfPrintCopies The number of copies to be printed (read/write).

OpusNumber Opus number of score from File > Score Info (read/write).

OriginalProgramVersion The version of Sibelius in which this score was originally created, as an integer in the following
format:

(major version) * 1000 + (minor version) * 100 + (revision) * 10. So Sibelius at the time of this writing would be 8.3.1 would be
returned as 8310.
 Object Reference 72

OtherInformation More information concerning the score from File > Score Info (read/write).

PageCount The number of pages in the score (read only).

PartName Value of Part Name from File > Score Info (read/write).

Publisher Publisher of score from File > Score Info (read/write).

Redraw Set this to True (1) to make the score redraw after each change to it, False (0) to disallow redrawing (write only).

ScoreDuration The duration of the score in milliseconds (read only).

ScoreEndTime The duration of the score, plus the score start time (see above), in milliseconds (read only).

ScoreHeight Height of a page in the score, in millimeters (read only).

ScoreStartTime The value of Timecode of first bar, from Play > Video and Time > Timecode and Duration, in milliseconds (read
only).

ScoreWidth Width of a page in the score, in millimeters (read only).

Selection The Selection object for the score, which is a list of selected objects (read only).

ShowMultiRests Is True (1) if Layout > Show Multirests is on (read/write).

StaffCount The number of staves in the score (read only).

StaffHeight Staff height, in millimeters (read only).

Subtitle Subtitle of score (read/write).

SystemCount The number of systems in the score (read only).

SystemObjectPositions Returns a SystemObjectPositions object corresponding to the settings in House Style > System
Object Positions for the score (read only).

SystemStaff The SystemStaff object for the score (read only).

Title Title of score from File > Score Info (read/write).

TransposingScore Is True (1) if Notes > Transposing Score is on (read/write).

UsingManualBarPlayOrder Returns True if Manual repeats playback is chosen in Play > Interpretation > Repeats, otherwise
False (read only).

YearOfComposition Value of Year of composition from File > Score Info (read/write).

Selection
for each variable in returns every BarObject (which is an object within a bar) in the selection.

for each type variable in produces each object of type in the selection. Note that if the selection is a system selection (which is sur-
rounded by a double purple box in Sibelius) then objects in the system staff will be returned in such a loop.

Methods
Clear() Removes any existing selection(s) from the current active score.

ClipboardContainsData([clipboard Id]) Returns True if the given clipboard contains data. As with the Copy and Paste meth-
ods, 0 (or no arguments) refers to Sibelius’s internal clipboard, and all other numeric values will interrogate the temporary clipboard
with the matching ID.

Copy([clipboard Id]) Copies the music within the current selection to Sibelius’s internal clipboard or a ManuScript-specific tempo-
rary clipboard, which goes out of scope along with the Selection object itself. If no clipboard Id is specified, or if it is set to 0, the
selection will be copied to Sibelius’s internal clipboard. Any other numeric value you pass in will store the data in a temporary clipboard
adopting the ID you specify. Used in conjunction with Paste or PasteToPosition (see below).
 Object Reference 73

Delete([remove staves]) Deletes the music currently selected in the active score. Akin to making a selection manually in Sibelius and
hitting Delete. If remove staves is omitted or set to True, Sibelius will completely remove any wholly selected staves from the score.
If you wish Sibelius to simply hide such staves instead, set this flag to False.

ExcludeStaff(staff number) If a passage selection already exists in the current active score, an individual stave may be removed
from the selection using this method.

HideSelectedEmptyStaves() If the current selection contains staves that are empty, they will be hidden (equivalent to selecting
a passage and choosing Layout > Hiding Staves > Hide Empty Staves).

IncludeStaff(staff number) If a passage selection already exists in the current active score, a non-consecutive stave may be added
to the selection using this method.

Paste([clipboard Id[,reset positions]]) Pastes the music from a given clipboard to the start of the selection in the current active score.
If no clipboard Id is specified, or if it is set to 0, the data will be pasted from Sibelius’s internal clipboard. Any other numeric value you
pass in will take the data from a temporary clipboard you must have previously created with a call to Copy (see above). Returns True
if successful.

If reset positions is False, the positions of any objects that have been moved by the user in the source selection will be retained in the
copy. This is the default behavior. If you wish Sibelius to reset objects to their default positions, set this flag to True. This can be useful
when copying one or more single objects (which is a non-passage selection).

Note that pasting into a score using this method will overwrite any existing music. Only one copy of the music will ever be made, so if
your selection happens to span more bars or staves than is necessary, the data will not be duplicated to fill the entire selection area.

PasteToPosition(stave num, bar num, position[, clipboard Id[,reset positions]]) Pastes the music from a given clipboard to a
specific location in the current active score. The optional parameters and pasting behavior works in the same way as calls to Paste.

RestoreSelection() Restores the selection previously recorded with a call to StoreCurrentSelection. Usefully called at
the end of a plug-in to restore the initial selection.

SelectPassage(start barNum[,end barNum[,top staveNum[,bottom staveNum[,start pos[,end pos]]]]]) Programmatically
makes a passage selection around a given area of the current active score. When no end barNum is given, only the start barNum will
be selected. If neither a top- nor bottom staveNum has been specified, every stave in the score will be selected, whereas if only a top stav-
eNum has been supplied, only that one staff will be selected. Sibelius will begin the selection from the start of the first bar if no start pos
has been given, similarly completing the selection at the end of the final bar if no end pos has been supplied.

SelectSystemPassage(start barNum[,end barNum[,start pos[,end pos]]]) Programmatically makes a system selection around
a given area of the current active score. When no end barNum is given, only the start barNum will be selected. Sibelius will begin the
selection from the start of the first bar if no start pos has been given, similarly completing the selection at the end of the final bar if no
end pos has been supplied.

StoreCurrentSelection() Stores the current selection in the active score internally. Can be retrieved with a call to Restore-
Selection (see below). Usefully called at the start of a plug-in to store the initial selection.

Transpose(degree, interval type[,keep double accs[,transpose keys]]) Transposes the currently selected music up or down by a
specified degree and interval type. To transpose up, use positive values for degree; to transpose down, use negative values. Note that de-
grees are 0-based, so 0 is equal to a unison, 1 to a second and so on. For descriptions of the various available interval types, see Global
Constants. By default, Sibelius will transpose using double sharps and flats where necessary, but this behavior may be suppressed by
setting the keep double accs flag to False. Sibelius will also transpose any key signatures within the selection by default, but can be
overridden by setting the fourth parameter to False.

For help in calculating the interval and degree required for a particular transposition, see the documentation for
the Sibelius.CalculateInterval and Sibelius.CalculateDegree methods.

The start pos and end pos you supply may be altered by ManuScript: Sibelius requires a passage selection to begin and end at a
NoteRest if it doesn’t encompass the entire bar.

The start pos and end pos you supply may be altered by ManuScript: Sibelius requires a passage selection to begin and end at a
NoteRest if it doesn’t encompass the entire bar.
 Object Reference 74

Variables
BottomStaff The number of the bottom staff of a passage (read only).

FirstBarNumber The internal bar number of the first bar of a passage (read only).

FirstBarNumberString The external bar number (including any bar number format changes) of the first bar of a passage (read
only).

FirstBarSr The position of the start of the passage selection in the first bar (read only).

IsPassage True if the selection represents a passage, as opposed to a multiple selection (read only).

IsSystemPassage True if the selection includes the system staff (read only).

LastBarNumber The internal bar number of the last bar of a passage (read only).

LastBarNumberString The external bar number (including any bar number format changes) of the last bar of a passage (read only).

LastBarSr The position of the end of the passage selection in the last bar (read only).

TopStaff The number of the top staff of a passage (read only).

Copying Entire Bars

Copying passages from one location in a score to another—or even from one score to another—is very simple. Here is an example func-
tion demonstrating how one might go about achieving this:

CopyBar(scoreSrc, barFirstSrc, barLastSrc, scoreDest, barFirstDest,
barLastDest) // This is the function signature

{
sel = scoreSrc.Selection;
sel.SelectPassage(barFirstSrc.BarNumber, barLastSrc.BarNumber,

barFirstSrc.ParentStaff.StaffNum,
barLastSrc.ParentStaff.StaffNum);

sel.Copy(0);
selDest = scoreDest.Selection;
selDest.SelectPassage(barFirstDest.BarNumber, barLastDest.BarNumber,

barFirstDest.ParentStaff.StaffNum,
barLastDest.ParentStaff.StaffNum);

selDest.Paste(0);
}

Note that you may use any temporary clipboard or Sibelius’s own internal clipboard if the source and destination locations are in the
same score, however you can only use Sibelius’s internal clipboard if the data is being transfered between two individual scores. This
is because the temporary clipboards belong to the Selection object itself.

Copying Multiple Selections from One Bar to Another
Using a combination of the BarObject’s Select method and the Selection object’s Copy and PasteToPosition methods, it
is possible to copy an individual or multiple selection from one location in a score to another. Bear in mind that Paste will always paste
the material to the very start of the selection, so if you’re copying a selection that doesn’t start at the very beginning of a bar, you’ll have
to store the position of the first item and pass it to PasteToPosition when you later come to paste the music to another bar.
 Object Reference 75

This example code below copies all items from position 256 or later from one bar to another. It is assumed that sourceBar is a valid
BarObject, and destStaffNum and destBarNum contain the destination staff number and bar number respectively:

sel = Sibelius.ActiveScore.Selection; // Get a Selection object for this score
sel.Clear(); // Clear the current selection
clipboardToUse = 1; // This clipboard ID we’re going to use
copyFromPos = 256; // Copy all objects from this point in the source bar
posToCopyTo = 0; // Variable used to store the position of the first object copied
for each obj in sourceBar { // Iterate over all objects in the bar

if (obj.Position >= copyFromPos) { // Ignore objects before the start threshold
obj.Select(); // Select each relevant object in turn
if (posToCopyTo = 0) {

posToCopyTo = obj.Position; // Remember the position of the first item
{

}
}
sel.Copy(clipboardToUse); // Copy the objects we’ve selected to the clipboard
sel.PasteToPosition(destStaffNum, destBarNum, posToCopyTo, clipboardToUse); // And
paste them to the destination bar at the relevant offset

Sibelius
There is a predefined variable that represents the Sibelius program. You can use the Sibelius object to open scores, close scores, display
dialogs or (most commonly) to get currently open Score objects.

for each variable in returns each open score.

Methods
AppendLineToFile(filename,text[,use_unicode]) Appends a line of text to the file specified (adds line feed). See comment for
AppendTextFile above for explanation of the use_unicode parameter. Returns True if successful.

AppendLineToRTFFile(filename,text) Appends a line of text to the file specified. Times New Roman 12pt is used, unless you
specify a change of formatting. To change formatting, use the following backslash expressions:

\B\ bold on

\I\ italic on

\U\ underline on

\n\ new line

\b\ bold off

\i\ italic off

\u\ underline off

\ffontname\ change to given font name (for example \fArial\ to switch to Arial)

\spoints\ set the font size to a specific point size (for example \s16\ to set the font to 16pts).

Note the difference in meaning of \s in the context of adding data to an RTF file, versus its use in the context of styling text directly
within Sibelius (see Syntax following).

AppendTextFile(filename,text[,use_unicode]) Appends text to the file specified. If the optional Boolean parameter use_unicode
is True, then the string specified will be exported in Unicode format; if this parameter is False then it will be converted to 8-bit Latin-1
before being added to the text file. This parameter is True by default. Returns True if successful.

CalculateDegree(source pitch, dest pitch, upward interval) Takes two note names in the form of a string (for example C, G#, Bb,
Fx or Ebb) and a boolean that should be True if the interval you’re wishing to calculate is upward. Returns a 0-based number describing
the degree between the two notes.

For example, CalculateDegree(“C#”, “G”, False) would return 3.
 Object Reference 76

CalculateInterval(source pitch, dest pitch, upward interval) Takes two note names in the form of a string (for example C, G#,
Bb, Fx or Ebb) and a boolean that should be True if the interval you’re wishing to calculate is upward. Returns a number representing
an Interval Type (see Global Constants). You can use the value returned in calls to NoteRest.Transpose and Selec-
tion.Transpose.

For example, CalculateInterval(“Bb”, “G#”, True) would return IntervalAugmented.

Close(show dialogs) Closes the current score or part view; if the current view is the last tab in the current window, the window will
therefore also be closed. If the optional Boolean parameter is True then warning dialogs may be shown about saving the active score,
and if it is False then no warnings are shown (and the score will not be saved).

CloseAllWindows(show dialogs) Closes all open document windows. If the optional Boolean parameter is True then warning di-
alogs may be shown about saving any unsaved scores, and if it is False then no warnings are shown (and the scores will not be saved).

CloseAllWindowsForScore(score, showDialogs) Closes all of the windows associated with the specified score. The second pa-
rameter, showDialogs, is an optional Boolean.

CloseDialog(dialogName,pluginName,returnValue) Closes the dialog dialogName belonging to the plug-in pluginName (nor-
mally this should be set to self), returning the Boolean value returnValue, which can be set to True (1) or False (0). Normally you
do not need to use this method to close a dialog, as you can set buttons (typically with labels like OK or Cancel) to close the dialog and
return a value, but if you want greater control over when a dialog is closed, this method provides it.

CloseWindow(show dialogs) Closes the current window (that closes all of the open tabs in the current window). If the optional Bool-
ean parameter is True then warning dialogs may be shown about saving the score, and if it is False then no warnings are shown (and
the score will not be saved).

CommandExists(CommandID) Returns a boolean to reflect if a given CommandID is available for execution.
For example:

if (Sibelius.CommandExists(toggle_review_mode)) {}

CreateFolder(foldername) Creates the folder of specified foldername; returns the Folder object created if successful, or null if it
fails.

CreateProgressDialog(caption,min value,max value) Creates the progress dialog, which shows a slider during a long opera-
tion.

CreateRTFFile(filename) Creates the Rich Text Format (RTF) file specified. Any existing file with the same name is destroyed.
Returns True if successful.

CreateTextFile(filename) Creates the plain text file specified. Any existing file with the same name is destroyed. Returns True if
successful.

DestroyProgressDialog() Destroys the progress dialog.

EnableControlById(plugin,dialog,controlID,enable) Dynamically enables or disables a given control on a plug-in dialog:
plug-in is a Plugin object, for example Self; dialog is a Dialog object, and therefore should not be passed in quotation marks; con-
trolID is the string corresponding to the control to be enabled or disabled; and enable is a Boolean parameter, which enables the control
when set to True and disables the control when set to False.

EnableNthControl(nth control, enable) Dynamically enables or disables a given control on a plug-in dialog. Can be called either
before a dialog has been displayed (in which case the operation will apply to the next dialog you show), or while a dialog is already vis-
ible (in which case the operation will affect the top-most currently visible dialog).

Note that, using this method, controls can only be identified according to their order upon creation; for this reason, you are strongly rec-
ommended to use EnableControlById() instead. To find out the creation order, open the appropriate dialog in the plug-in editor,
right click on the dialog’s client area and choose Set Creation Order from the contextual menu that appears. Note that nth control ex-
pects a 0-based number, unlike the display given by Set Creation Order. By default, all controls will be enabled; to disable any given
control, set enable to false.

Execute(CommandID) Executes the specified command. This lets you create scriptable plug-ins that can execute any number of
commands one after the other. Using Sibelius.Execute() you can create plug-ins to speed up workflows that include multi-step
repetitive tasks and then execute them all in one step. Any command listed in the Commands list on the Home tab can be used with
Sibelius.Execute().
 Object Reference 77

Use Cmd() in conjunction with Sibelius.Execute() to execute commands by name rather than by CommandID. For example:
Sibelius.Execute(Cmd("Select All"));

Of course, you can use other ManuScript methods for features not in the Commands list in combination with Sibelius.Execute()
to create plug-ins for almost any workflow.

FileExists(filename) Returns True if a file exists or False if it doesn’t.

FolderExists(foldername) Returns True if a folder exists or False if it doesn’t.

FindCommandId(Command Name) Translates the name of a command (as shown in Sibelius) into a CommandId, and returns that
CommandId as a string. The Command Name argument is case-insensitive. It is also specific to the current language set in Sibelius. If
no match is found, an empty string will be returned. For example:

Sibelius.FindCommandId("ToGGle ReVieW mODe");

FindCommandName(Id) Translates a CommandId or a StyleId to the corresponding Command Name or Style Name in the cur-
rent language set in Sibelius and returns that Name as a string. If no match is found, an empty string is returned. For example:

Sibelius.FindCommandName("toggle_review_mode"); //CommandId
Sibelius.FindCommandName("line.staff.bend"); //StyleId

FindStyleId(Style Name) Translates the name of a Style (as shown in Sibelius) into a StyleId, and returns that StyleId as a string.
The Style Name argument is case-insensitive. It is also specific to the current language set inside Sibelius. If no match is found, an empty
string is returned. For example:

Sibelius.FindStyleId("Crescendo");

GetDocumentsFolder() Returns the user’s My Documents (Windows) or Documents (Mac) folder.

GetElapsedCentiSeconds(timer number) Returns the time since ResetStopWatch was called for the given stop watch, in
100ths of a second.

GetElapsedMilliSeconds(timer number) Returns the time since ResetStopWatch was called for the given stop watch, in
1000ths of a second.

GetElapsedSeconds(timer number) Returns the time since ResetStopWatch was called for the given stop watch in seconds.

GetFile(file path) Returns a new File object representing a file path for example file=Sibelius.GetFile
("c:\\onion\\foo.txt");

GetFolder(file path) Returns a new Folder object representing a file path for example folder=Sibelius.Get-
Folder("c:\");

GetListOfCommandNamesInCategory(Localized Command Category Name) Returns a sparse array of all External Localized
Command Names (in alphabetical order). For example:

fileTabCommands = Sibelius.GetListOfCommandNamesInCategory("File Tab")

GetNotesForChord(chord name) Returns a ManuScript array giving the MIDI pitches corresponding to the named chord symbol.

GetNotesForGuitarChord(chord name) Returns a ManuScript array giving the MIDI pitches and string numbers corresponding
to the named guitar chord, using the most suitable fingering according to the user’s preferences. Strings are numbered starting at 0 for
the bottom string and increasing upwards. The array returned has twice as many entries as the number of notes in the chord, because the
pitches and string numbers are interleaved thus:

array[0] = MIDI pitch for note 0

array[1] = string number for note 0

array[2] = MIDI pitch for note 1

array[3] = string number for note 1

...

GetScoresFolder() Returns a new Folder object representing the default Scores folder (as defined on the Files page of File >
Preferences).

GetSyllabifier() Returns a new Syllabifier object, providing access to Sibelius’s internal syllabification engine.

GetUserApplicationDataFolder() Returns the user’s Application Data (Windows) or Application Support (Mac) folder.

You can further speed up your workflow by assigning a keyboard shortcut to your plug-in.
 Object Reference 78

GetUserSibeliusFolder() Returns the path to the Sibelius folder inside the user Documents folder by default (this value may be
overridden in File > Preferences > Saving and Exporting > Saving scores). For example:

On Windows: C:\Users\<your user name>\Documents\Scores

On Mac: /Users/<your user name>/Documents/Scores

GoToEnd() Moves the playback line to the end of the score.

GoToStart() Moves the playback line to the start of the score.

IsDynamicPartOpen(dynamic part) Returns True if the specified part and its corresponding Score is valid and is visible in a Score
window within Sibelius.

IsFontFamilyInstalled(font name) Returns True if a font with the name font name exists on the system, otherwise False.

LaunchApplication(path[,parameters[,hide]]) Launches an external application specified via its path, which must be a complete
path to the application to be launched. You can optionally pass in a sparse array of parameters (or a string if you want to pass in only
a single parameter); omit this or set it to null to pass no parameters to the launched application. To prevent the launched application
from gaining the focus once it is launched, set the optional hide parameter to True; if unspecified, this defaults to False, so the
launched application will gain the focus.

LiveTempoTap() Equivalent to tapping a beat during Live Tempo recording.

MakeSafeFileName(filename) Returns a “safe” version of filename. The function removes characters that are illegal on Windows
or Unix, and truncates the name to 31 characters so it will be viewable on Mac OS 9.

MessageBox(string) Shows a message box with the string and an OK button.

MoveActiveViewToBar(bar number[,position]) Brings a given internal bar number into view. Has the same effect as Go to Bar
in Sibelius. An optional position within the bar may also be specified, but if omitted, the very start of the bar will be brought into view.

MoveActiveViewToSelection([start of selection]) Brings the object(s) currently selected into view. If start of selection is False,
the end of the selection will be brought into view. If the optional argument is True or omitted, the start of the selection will be visible.
Has the same effect as Shift + Home/End in Sibelius.

New([manuscript paper]) Creates and shows a new score. If the optional parameter manuscript paper is not supplied, Sibelius will cre-
ate a blank score; manuscript paper should be the filename of the manuscript paper you want to create, minus its .sib file extension, op-
tionally including the name of the category (subfolder) in which it is located, for example both "String orchestra" and
"Orchestral/String orchestra" will work. Returns the score object corresponding to the new score.

NthScore(score index from 0) Returns the nth open score (zero-based), or null if the specified index is not valid.

Open(filename [,quiet]) Opens and displays the given file. Filename must include its extension, for example Song.sib. If the optional
boolean parameter quiet is set to True, then no error messages or dialogs will be displayed, even if the file could not be opened for some
reason. Returns True if the file is opened successfully, False otherwise.

Play() Plays the current score, from the current position of the playback line.

PlayFromSelection() Plays from the current selection.

PlayFromStart() Plays from the start of the score.

PrependScreenreaderText(string) Prepends string to the default screen reader description.

Print(number of copies[, dynamic part[, showdialog]]) Prints the specified number of copies of the current score or dynamic part
using default settings. If number of copies is missing or a negative number, then the default number of copies for the score or part is
printed, and if set to 0 no printing occurs. The optional dynamic part parameter must be a valid object of the active Score (this does not
affect or use Score.CurrentDynamicPart for the Score printed); if it is not supplied, the active Score is printed instead. Returns
True for success, False for failure. The second optional parameter, showdialog, is a Boolean: if set to True, Sibelius will show the
Print dialog, and if not specified or set to False, Sibelius will not show the dialog.

PrintAllDynamicParts([score]) Prints the default number of copies of all dynamic parts, but does not print the full score. Prints
the currently-active Score if the optional score parameter is not passed in. Returns True for success, False for failure.

RandomNumber() Returns a random number between 0 and 32,767.

RandomSeed(start number) Restarts the random number sequence from the given number.
 Object Reference 79

RandomSeedTime() Restarts the random number sequence based on the current time.

RefreshDialog() Refreshes the data being displayed by any controls on the currently active plug-in dialog. For example, if a text
object gets its string from a global variable and the value stored in this global variable has changed whilst the dialog is visible, calling
RefreshDialog will update the text object on the dialog accordingly. Returns True if successful.

ResetStopWatch(timer number) Resets the given stop watch. timer number must be an integer greater than 0.

ReadTextFile(filename) Reads the given filename into an array of strings, one per line. The file will be treated as ANSI (that is
8-bit) text by default, unless it starts with a valid UTF-16 byte-order marker (BOM), in which case it will be treated as Unicode.

The resulting array can be used in two ways:
lines = Sibelius.ReadTextFile("file.txt");
for each l in lines {

trace(l);
}

or:

lines = Sibelius.ReadTextFile("file.txt");
for i=0 to lines.NumChildren {

trace(lines[i]);
}

ScreenreaderText(string) Replaces Sibelius’s default screen reader description with string.

SelectFileToOpen(caption,file,initial_dir,default extension,default type,default type description) Shows a dialog prompting
the user to select a file to open. All parameters are optional. The method returns a file object describing the selection. For example:

file=Sibelius.SelectFileToOpen("Save Score","*.sib","c:\","sib","SIBE","Sibelius
File");

Note that the initial_dir parameter has no effect on Mac, because it is unsupported by macOSSelectFileToSave(caption,file,ini-
tial_dir,default extension,default type,default type description)

Shows a dialog prompting the user to select a file to save to. All parameters are optional. The method returns a File object describing
the selection. File types and extensions:

Description Type Extension

EMF graphics "EMF" emf

Windows bitmap "BMP" bmp

Macintosh PICT bitmap"PICT" pict

Sibelius score "SIBE" sib

MIDI file "Midi" mid

House style file "SIBS" lib

PhotoScore file "SCMS" opt

Web page "TEXT" html

TIFF graphics "TIFF" tif

PNG graphics "PNG" png

Note that the initial_dir parameter has no effect on Mac, because it is unsupported by macOS.

SelectFolder([caption]) Allows the user to select a folder and returns a Folder object. The optional string parameter caption sets
the caption of the dialog that appears.

SetCurrentScoreViewType(view type) Allows plug-ins to switch between Panorama and normal view; values are ViewTypeP-
age (0) and ViewTypePanorama (1).

SetFocusToControl(pluginName,dialogName,controlID) Sets the focus on a specific control in a plug-in dialog. pluginName
will normally be set to self, dialogName is the name of the dialog in which the control is found, and controlID is the ID of the control
to receive the focus, which must be specified in quotation marks.
 Object Reference 80

ShowDialog(dialogName,pluginName) Shows a dialog dialogName from a dialog description and sends messages and values to the
given Plugin object pluginName (normally set to Self). Returns the value True (1) or False (0) depending on which button you
clicked to close the dialog (typically OK or Cancel).

ShowDynamicPart(dynamic part[, newWindow]) Shows the specified dynamic part. The second optional Boolean parameter new-
Window allows you to specify whether the part should open in a new tab (specify False, the default) or a new window (specify True).
Returns True if the specified part can be shown, False otherwise. Can be used to bring a Score to the front by way of Sibel-
ius.ShowDynamicPart(Score.CurrentDynamicPart).

ShowTraceWindow() Shows the Plug-in Trace Window, or forces it to the front if it is already shown but currently behind another
window.

StartLiveTempoRecording() Starts recording Live Tempo; equivalent to choosing Play > Record Live Tempo

StopLiveTempoRecording() Stops recording Live Tempo.

Stop() Stops the current score from playing.

UpdateProgressDialog(progress pos,status message) Returns 0 if the user clicked Cancel.

YesNoMessageBox(string) Shows a message box with Yes and No buttons. Returns True if Yes is chosen, else False.

Variables
ActiveScore Is the active Score object (read/write). Setting Sibelius.ActiveScore makes active the current dynamic part
(which may be the full score rather than a part) of the score. If that window is not currently shown, a new window may be created ac-
cording to the user’s preferences. Returns null if it fails to make the specified score or part active.

ApplicationLanguage Returns the language of the version of S.ibelius currently running, always in English—such as English,
German, French and so on. (read only)

ApplicationLanguageIsoString Returns the two-letter ISO 3166 identifier of the language in which Sibelius is currently
running, such as en, de, fr, and so on (read only).

AvailableCommands Returns a sparse array of all available CommandIDs in alphabetical order.

CommandCategories Returns a sparse array of all Command Categories in the local language (in system order).

CurrentTime Returns a string containing the current time in the format hh:mm:ss, based on your own computer’s locale (read only).

CurrentDateShort Returns a string containing the current date in the format dd/mm/yyyy, based on your own computer’s locale
(read only).

CurrentDateLong Returns a string containing the current date in the format dd MM yyyy, based on your own computer’s locale
(read only).

CurrentDate Returns the current date and time as a DateTime object in local time (read only).

FontFamilies Returns a sparse array of strings containing the names of all the available font families on the system (read only).

HouseStyles The list of house styles available, as a ComponentList.

LocalizedApplicationLanguage Returns the language in which Sibelius is currently running, in the localized language, for ex-
ample it returns Deutsch when running in German (read only).

ManuscriptPapers The list of manuscript papers available, as a ComponentList.
 Object Reference 81

OSVersionString The current operating system in which the plug-in is running, as one of the following strings:

If the operating system is unrecognized, the variable returns Unknown system version.

PathSeparator Returns the current path separator character (which is “\” on Windows, “/” on Mac).

Plugins The list of plug-ins installed. See the documentation for the Plugin object

Playing Is True if a score is currently being played (read only).

ProgramVersion The current version of Sibelius in which the plug-in is running, as an integer in the following format:

(major version) * 1000 + (minor version) * 100 + (revision) * 10

So Sibelius 3.1.3 would be returned as 3130.

ScoreCount Is the number of scores being edited (read only).

SuppressDefaultScreenreaderText Set to True to suppress the default score description for screen readers for blind and vi-
sually impaired users (read/write).

ViewAnnotations Is True if View > Invisibles > Annotations is enabled (read/write).

ViewAttachmentLines Is True if View > Invisibles > Attachment Lines is enabled (read/write).

ViewBarNumbers Is True if View > Invisibles > Bar Numbers is enabled (read/write).

ViewComments Is True if View > Invisibles > Comments is enabled (read/write).

ViewHandles Is True if View > Invisibles > Handles is enabled (read/write).

ViewHiddenObjects Is True if View > Invisibles > Hidden Objects is enabled (read/write).

ViewHighlights Is True if View > Invisibles > Highlights is enabled (read/write).

ViewLayoutMarks Is True if View > Invisibles > Layout Marks is enabled (read/write).

ViewNoteVelocities Is True if View > Live Playback Velocities is enabled (read/write).

ViewNoteColors The current View > Note Colors setting used (read/write).
Description Value

None 0

Notes out of Range 1

Pitch Spectrum 2

Voice Colors 3

ViewPageMargins Is True if View > Invisibles > Page Margins is enabled (read/write).

ViewPlaybackLine Is True if View > Invisibles > Playback Line is enabled (read/write).

ViewReplayMarker Is True if View > Invisibles > Replay Line is enabled (read/write).

Windows 95
Windows 98
Windows ME
Windows NT 3.x
Windows NT 4
Windows 2000
Windows XP
Windows Vista
Windows 7
Windows 8
Windows 10

Mac OS X
Mac OS X Jaguar
Mac OS X Panther
Mac OS X Tiger
Mac OS X Leopard
Mac OS X Snow Leopard
Mac OS X Lion
Mac OS X Mountain Lion
macOS Yosemite
macOS El Capitan
macOS Sierra
macOS Mojave
macOS Catalina
 Object Reference 82

SoundInfo
The SoundInfo object contains information about the playback of a given staff.

To get the SoundInfo object for a staff, use for example:
staff = Sibelius.ActivateScore.NthStaff(1);
soundinfo = staff.SoundInfoAtPosition(1,0,0);

The SoundInfo object can be moved around the staff once you have created it, and it will return information about the sound IDs in
use throughout the staff.

Methods
Clone() Returns a new SoundInfo object using the same credentials as the object on which the method is called.

CreateAt([barNumber,[position,[nthRepeat]]]) Returns a new SoundInfo object at the specified bar number, at the specified
rhythmic position in the bar (for example 256 for the second quarter note position), as if played through at the nth repeat (for example
2 for the second repeat). If no bar number is specified, the information returned will refer to bar 1. If no position is specified, the infor-
mation will refer to the start of the bar. If nth repeat is not specified, the information returned will refer to the first pass through the score.

MoveTo([barNumber,[position,[nthRepeat]]]) Uses the same parameters as CreateAt(). Allows the caller to move the existing
SoundInfo object to an entirely new location on the current staff.

MoveToNext() Moves to the next sound change event. If there are no more changes, it returns false and doesn’t move.

MoveToPrevious() Moves to the previous sound change event. If there are no changes before, it returns false and doesn’t move.

Variables
ActualSoundId The actual sound ID at the current location (read only).

BarNum Returns the current location's bar number (read only).

IsDrumStave Returns true if the current location is on a drum staff (read only).

NthRepeat Returns or sets the nth repeat (or pass) of the current location’s bar (read/write).

NumTimesBarPlayed The number of times the bar at the current location is played (read only).

PatchName The name of the patch in use at the current location (read only).

Position Returns or sets the current location’s position within the bar (read/write).

RequestedSoundId The requested sound ID at the current location (read only).

SoundChangeIndex The current index in the bar play sequence. This allows differentiation between different identical sound
changes (read only).

SoundSetName Returns the name of the sound set in use at the current location (read only).

StaveNum Returns the 1-based stave number (read only)

SparseArray
To create a sparse array, use the built-in method CreateSparseArray(a1,a2,a3,a4...an).

for each allows you to iterate over the contents of a sparse array.

Methods
Concat(array1, array2 ... arrayN) Concatenate zero or more sparse arrays to this one, and return it as a one-level deep copy (so if a
sparse array contains other arrays, for example, then the new sparse array will contain references to those arrays, not copies of them).
This method does not modify the original sparse array.
 Object Reference 83

Join([separator]) Returns the array as a string, with each populated element separated by the optional separator. If you don’t specify
separator, the default separator is a comma.

Push(value1, value2, value3 ... valueN) Pushes one or more values to the end of the array.

Pop() Returns the last element of the array, and removes it from the array.

Reverse() Reverses the sparse array in place, modifying the sparse array being operated on. The reversed array only populates the
elements needed to create the reversed array.

Slice(start[,end]) Returns a new sparse array of the elements starting from start and up to, but not including, the optional end. start
and end can be negative indices referring to offsets from the end of the array.

Variables
Length Returns or sets the length of the array (read/write).

ValidIndices Returns a sparse array containing only the populated indices of the original sparse array, that is those that are not null.

Converting Old-style Arrays to New Sparse Arrays
The SparseArray object is a replacement for the old Array object, which was a more limited kind of array that could only hold
strings and integers, but no other kind of objects. You are recommended to use the new SparseArray object for all arrays in your
plug-ins, but if you have an existing plug-in in which old-style Arrays are used, you can convert them to SparseArrays as follows:

Array.ConvertToSparseArray() Returns a new SparseArray object, populated with strings converted from the old-style Ar-
ray.

SpecialBarline
Derived from a Bar object, these can only be found in system staves.

Methods
None.

Variables
BarlineType The name of the type of special barline, expressed as a string.

BarlineInternalType The type of the barline, expressed as a numeric ID which maps to one of the SpecialBarline global
constants (see Global Constants).

Staff
These can be normal staves or the system staff. The system staff contains objects that apply to all staves, such as SpecialBarlines
and text using a system text style.

A Staff contains Bar objects.

for each variable in returns each object in the staff.

for each type variable in returns each item of type in the staff in chronological order (that is in order of rhythmic position in each bar).

Methods
AddClef(pos,concert pitch clef[,transposed pitch clef]) Adds a clef to the staff at the specified position. concert pitch clef deter-
mines the clef style when Notes > Transposing Score is switched off; the optional transposed pitch clef parameter determines the clef
style when this is enabled. Clef styles should be an identifier like “clef.treble”; for a complete list of available clef styles, see Clef
Styles. Alternatively you can give the name of a clef style, such as “Treble,” but bear in mind that this may not work in non-English
versions of Sibelius.
 Object Reference 84

AddLine(pos,duration,line style,[dx,[dy,[voicenumber,[hidden]]]]) Adds a line to staff (please see the documentation in Bar
object below).

AddNote(pos,sounding pitch,duration,[tied [,voice [,diatonic pitch[,string number]]]]) Adds a note to staff, adding to an exist-
ing NoteRest if already at this position (in which case the duration is ignored); otherwise creates a new NoteRest. Will add a new bar
if necessary at the end of the staff. The position is in 1/256th quarters from the start of the score. The optional tied parameter should be
True if you want the note to be tied. Voice 1 is assumed unless the optional voice parameter (with a value of 1, 2, 3 or 4) is specified.
You can also set the diatonic pitch, that is the number of the “note name” to which this note corresponds, 7 per octave (35 = middle C,
36 = D, 37 = E and so on). If a diatonic pitch of zero is given then a suitable diatonic pitch will be calculated from the MIDI pitch. The
optional string number parameter gives a string number for this note, which is only meaningful if the note is on a tablature stave. If this
parameter is not supplied then a default string number is calculated based on the current tablature stave type and the guitar tab fingering
options (specified on the Note Input page of File > Preferences). Returns the Note object created (to get the NoteRest containing the
note, use Note.ParentNoteRest).

When adding very short notes to tuplets, Sibelius may be unable to find a legal place for the note in the bar. Should this happen, Sibelius
will return null. You should therefore check for a valid object if there is any likelihood that this situation may arise in your code.

AddStaffAbove(ossia,[start bar number[,end bar number[,start pos[,end pos]]]]) Adds a new staff above the staff. Set ossia to
True to create an ossia (small) staff. The other, optional parameters determine where the staff should be visible: if you do not specify
a start bar number, the staff will be visible from the start of the score; if you do not specify an end bar number, the staff will be visible
to the end of the score. If you specify a start and/or end bar number, the staff will be hidden outside that range by way of an instrument
change to the No instrument (hidden) instrument type. start pos and end pos represent the rhythmic position within the start bar number
and end bar number respectively, and if not specified, start pos will default to the start of the bar, and end pos will default to the end of
the bar. Returns the staff created, or null if the call fails.

AddStaffBelow(ossia,[start bar number[,end bar number[,start pos[,end pos]]]]) Adds a new staff below the staff. See
AddStaffAbove() above for details.

AddSymbol(pos,symbol index or name) Adds a symbol to staff (please see the documentation in Bar object below).

CurrentKeySignature(bar number) Returns a KeySignature valid at the bar number passed.

NthBar(n) Returns the nth bar in the staff, counting from 1.

ResetSpaceAroundStaff(above,below[,from bar[,to bar]]) Does the equivalent of Layout > Reset Space Above Staff and/or
Reset Space Below Staff for the given range of bars in a staff. Set above to True to reset the space above the staff, and below to True
to reset the space below the staff. If from bar is not specified, Sibelius sets it to 1; if to bar is not specified, Sibelius sets it to the last
bar of the score.

ScaleFactorChange(StaveScaleFactor, startBarNum, endBarNum) Equivalent to setting the Staff Size property
within the Inspector. Valid StaveScaleFactor types include: NormalSize (0), MediumSize (1), SmallSize (2), and Ex-
traSmallSize (3). It requires a valid range specified by startBarNum and endBarNum.

SetSound(styleID[,set SoundStage]) Changes the initial playback sound of this staff to be the default sound for the given default in-
strument styleID. For a complete list of default instrument style IDs in Sibelius, see Instrument Types. If the optional Boolean param-
eter is set to False, then the SoundStage information (volume, pan and distance) for this staff will be unchanged. If it is omitted or set
to True, then the SoundStage information will be set to the default for the new sound.

SetSoundID(soundID) Changes the initial playback sound of this staff to the given soundID.

SoundIDAtPosition([bar number,[position,[nth repeat]]]) Returns a new SoundInfo object at the specified bar number, at
the specified rhythmic position in the bar (for example 256 for the second quarter note position), as if played through at the nth repeat
(for example 2 for the second repeat). If no bar number is specified, the information returned will refer to bar 1. If no position is spec-
ified, the information will refer to the start of the bar. If nth repeat is not specified, the information returned will refer to the first pass
through the score.

Staff[array element] Returns the nth bar (counting from 1) for example Staff[1].

If you add a note to a score that intersects an existing tuplet, Sibelius will try to snap the note to the closest sensible place within
that tuplet. However, you are advised to use Tuplet.AddNote() for this purpose as it is void of any ambiguity.
 Object Reference 85

Variables
BankHigh Controls MIDI controller 0, used to select the “coarse” bank number for this stave, and corresponding to the Mixer control
of the same name. The range is 0–127, or –1 if you don’t want to send this controller message at the start of playback. Note that not all
MIDI devices support multiple banks (read/write).

BankLow Controls MIDI controller 32, used to select the “fine” bank number for this stave, and corresponding to the Mixer control of
the same name. The range is 0–127, or –1 if you don’t want to send this controller message at the start of playback. Note that not all
MIDI devices support multiple banks (read/write).

BarCount Number of bars in the staff (read only).

BarNumber The bar number of this bar. This is the internal bar number, which always runs consecutively from 1 (read only).

Channel The MIDI channel number of this staff, numbered 1–16 (read/write).

Distance The reverb “distance” of this staff, corresponding to the control of the same name in the Mixer. This is a percentage, used
to scale the overall reverb settings from the Performance dialog (read/write).

FullInstrumentName Gives the full instrument name of the staff, empty for an unnamed staff (read/write).

FullInstrumentNameWithFormatting Gives the full instrument name of the staff including any changes of font or style, if any
(read/write).

FullStaffName Returns the initial full staff name (read/write).

FullStaffNameWithFormatting Returns the initial full staff name including any changes of font or style, if any (read/write).

NumStavesInSameInstrument The number of staves belonging to the default instrument from which this staff was created (read
only).

InitialClefStyle The name of the initial clef on a staff, depending on the state of Notes > Transposing Score (read only).

InitialClefStyleId The style identifier of the initial clef on a staff, depending on the state of Notes > Transposing Score (read
only).

InitialInstrumentType Returns an InstrumentType object for the instrument type at the start of the staff.

InitialKeySignature Returns the KeySignature object at the start of this staff (read only).

InitialStyleId Returns the style identifier of the staff (read only). To create an instrument from such an ID, pass the style as the
first argument to Score.CreateInstrument. For a complete list of all the default instrument names in Sibelius, see Instrument
Types.

InstrumentName Gives the full instrument name of the staff in the form that is displayed on the Instruments and Staves dialog in
Sibelius (read only). For an unnamed stave, this will be “[Piano]” for example, where Piano is the default instrument name of the stave
(see below). To get the internal name (which will be empty for unnamed staves), use the read/write variables
FullInstrumentName or ShortInstrumentName instead.

IsSystemStaff True or False depending on whether this staff is a system staff or not (read only).

IsVocalStaff Returns True if the instrument type used by the staff has the Vocal staff option switched on, meaning that the default
positions of dynamics should be above the staff rather than below (read only).

MuteMode Specifies whether or not this stave will play back. Corresponds to the mute button in the Mixer. The supported values are
defined as global constants (see Global Constants) and are Muted, HalfMuted and NotMuted (read/write).

Pan The MIDI stereo panning position of this staff (corresponding to the pan control in the Mixer). Permissible values are –100 to 100,
with positive values being to the right and negative to the left (read/write).

ParentScore Returns the staff’s parent Score object (read only).

ShortInstrumentName Gives the short instrument name of the staff, empty for an unnamed staff (read/write).

ShortInstrumentNameWithFormatting Gives the short instrument name of the staff including any changes of font or style, if
any (read/write).

ShortStaffName Returns the initial short staff name (read/write).
 Object Reference 86

ShortStaffNameWithFormatting Returns the initial short staff name including any changes of font or style, if any (read/write).

ShowInFocusOnStaves If True then this staff will be shown when Layout > Focus on Staves is enabled (see also Score.Fo-
cusOnStaves). This variable cannot be set to False unless it is also True for at least one other staff in the score (read/write).

Solo True or False depending on whether this staff plays back in “solo” mode, corresponding to the Mixer button of the same name
(read/write).

SoundIdOverrideIfAny Returns a string containing the sound ID override set in the mixer for the staff. If no override has been set,
an empty string is returned (read only).

Small True if the staff is small (such as an ossia staff), False if it is normal sized (read/write).

StaffNum Returns the number of this stave, counting from 1 at the top of the currently-viewed part. Returns 0 for SystemStaff ob-
jects (read only).

Volume The overall MIDI volume of this staff, corresponding to its fader in the Mixer. Permissible values are 0–127 (read/write).

Syllabifier
Acts as a wrapper around Sibelius’s internal Syllabification engine, exposing its functionality to ManuScript.

Methods
AbbreviateUsingApostrophe(useApostrophe) When the abbreviate flag is set to True when calling Syllabify, Sibelius will re-
place vowels that have been combined with the previous syllable with an apostrophe if this option is enabled—for example Vege-ta-bles
vs Veg’-ta-bles. Calling this method will cause the syllabification engine to recalculate its result if necessary.

GetNthSyllable(n) Once a string has been syllabified by calling the Syllabify method, you can use this method to return each
individual syllable as a string

NthSyllableEndsWord(n) Once a string has been syllabified by calling the Syllabify method, you can use this method to find
out whether each syllable occurs at the end of a word

Syllabify(textToSyllabify[, language[, abbreviate = False]]) Breaks a string down into its syllabic components, returning the
number of syllables in the resultant syllabification, or 0 if an error has occurred. The rules of the specified language will be used, and
you may legally supply either a language ID, or the localized language name. To get the individual syllables, you should call the Get-
NthSyllable and NthSyllableEndsWord methods documented below.

If the language argument is omitted, Sibelius will attempt to automatically identify the language of the text. If this is not possible, or
if an unrecognised language ID or name has been supplied, 0 will be returned.

When abbreviate is True, each ambiguous word in the string will be syllabified using the minimal number of syllables. For exam-
ple, syllabifying “Everybody likes vegetables” would return “Eve-ry-bod-y likes vege-ta-bles” with this flag set to True, otherwise
“E-ve-ry-bod-y likes veg-e-ta-bles”.

Variables
AbbreviateUsingApostrophe Returns True/False depending on whether the syllabification engine is set to abbreviate combined
syllables with an apostrophe (read only – call method with same name for write access).

AvailableLanguageIds Returns an array containing a list of the available syllabification languages as three-letter non-translatable
IDs – such as ENG (English), GER (German), LAT (Latin). These IDs are identical in all localized versions of Sibelius (read only).

AvailableLanguages Returns an array containing a list of the available syllabification languages as localized strings (read only).

NumberOfSyllables Returns the number of syllables in the hyphenated string generated by calling the Syllabify method (read
only).

SyllabifiedString Returns the resultant hyphenated string generated by calling the Syllabify method (read only).
 Object Reference 87

SymbolItem and SystemSymbolItem
Derived from a BarObject. For system symbols (such as symbols belonging to the system staff, retrieved with for each on the
SystemStaff object), the type of symbol objects is SystemSymbolItem, not SymbolItem.

Methods
None.

Variables
Index The index of this symbol in the list of symbols. This corresponds to its position in the Create > Symbol dialog, counting from
zero left-to-right and top-to-bottom (read only).

Name The name of this symbol. May be translated in non-English language versions of Sibelius (read only).

Size The draw size of the symbol, corresponding to the four available options in the Symbols dialog in Sibelius. The four available
values are NormalSize, CueSize, GraceNoteSize and CueGraceNoteSize, all defined as global constants (read/write).

SystemObjectPositions
Accessed from a Score object. Corresponds to the settings in House Style > System Object Positions.

Methods
GetNthStaffShowsSystemObjects(staffNum) Returns True if the given staff number staffNum (relative to the current part) is
showing system objects above it, otherwise False.

SetNthStaffShowsSystemObjects(staffNum, show) Tells the staff with the given staff number staffNum (relative to the current
part) either to show or not show system objects above it. This will have no effect if you pass in the top staff in the part, or if the maximum
number of staves allowed to show system objects has already been met.

Clear([removeBelowBottomStaff]) Allows you to clear all the system object positions (apart from the compulsory one above the top
staff) in a single operation; set the optional Boolean parameter removeBelowBottomStaff to True to also clear the Below bottom staff
system object position.

Variables
NumStavesShowingSystemObjects Returns the current number of staves showing system object positions (read only).

ShowSystemObjectsBelowBottomStaff Returns True if system objects should show below the bottom staff, otherwise False
(read/write).

SystemStaff, Staff, Selection, Bar and, all BarObject-derived Objects

Variables
IsALine Returns true if the object is a line object. (Note that this is a variable, not a method, unlike the IsObject()method for all
objects.)

Type A string giving the name of the type of an object. The strings for the first 4 types above are "SystemStave", "Stave", "Mu-
sicSelectionList", and "Bar". Note that this variable is also a member of all objects that occur in bars.
 Object Reference 88

SystemStaff
There is one SystemStaff object per score. The SystemStaff contains objects which apply to all staves, such as Special Barlines
and text using a system text style. Unlike normal staves, the SystemStaff does not appear in the score itself. As such, most of the vari-
ables and methods supported for Staff objects are not available on a SystemStaff. Those that are supported by SystemStaff are
as follows.

Methods
CurrentKeySignature(bar number) Returns a KeySignature valid at the bar number passed.

CurrentTimeSignature(bar number) Returns a TimeSignature valid at the bar number passed.

NthBar(n) Returns the nth bar in the staff, counting from 1.

SystemStaff[array element] Returns the nth bar (counting from 1) for example SystemStaff[1].

Variables
BarCount Number of bars in the staff (read only).

InitialKeySignature Returns the KeySignature object at the start of this staff (read only).

IsSystemStaff Returns True for a SystemStaff (read only).

Text and SystemTextItem
Derived from a BarObject. For system text (such as text belonging to the system staff, retrieved with for each on the System-
Staff object), the type of text objects is SystemTextItem, not Text.

Methods
None.

Variables
InitialFontName Returns the font name used at the start of a styled string (read only).

InitialFontSize Returns the font size in SUs (1/32nd space) if the text object is of a single size, or –1 if the text object uses mul-
tiple font sizes (read only).

JumpAtEndOfBar Returns True if the system text object has Jump at bar end (in the Playback panel of the Inspector) set, otherwise
False. Always returns False for staff text objects (read/write).

StyleAsText The text style name (read/write).

StyleId The identifier of the text style of this piece of text (read/write).

Text The text as a string (read/write).

TextWithFormatting Returns an array containing the various changes of font or style (if any) within the string in a new element
(read only). For example, “This text is \B\bold\b\, and this is \I\italic\i\” would return an array with eight elements containing the fol-
lowing data:

arr[0] = “This text is “
arr[1] = “\B\”
arr[2] = “bold”
arr[3] = “\b\”
arr[4] = “, and this is “
arr[5] = “\I\”
arr[6] = “italic”
arr[7] = “\i\”

TextWithFormattingAsString The text including any changes of font or style (read only).
 Object Reference 89

TimeSignature
Derived from a BarObject.

Methods
None.

Variables
AllowCautionary Returns True if the time signature is set to show a cautionary at the end of the previous system, if it occurs at
the start of a system (read/write).

Denominator The time signature’s bottom number (read only).

Numerator The time signature’s top number (read only).

Text The time signature as text. You can use this to detect common time and alla breve time signatures by comparing it to the global
constants CommonTimeString and AllaBreveTimeString, which define the Unicode characters used by these symbols. Other
time signatures will be of the form “4\n4” (read only).

TreeNode
These are used internally by ManuScript to implement arrays and hashes (returned with the CreateArray and CreateHash meth-
ods), and to represent global data (defined in the plug-in editor). Each TreeNode can contain a label, a piece of data and a list of “chil-
dren,” which are also TreeNodes. Normally, any access to a TreeNode object will access the data that is held, so that you don’t need
to know anything about them, but there are also some extra variables and methods that may be useful in some circumstances. These can
be called on any array, hash or global variable, and on any member of such a structure.

Methods
WriteToString Returns a string that represents the structure of this TreeNode object. In this representation, the data of a Tree-
Node is surrounded by double quotes and the label is not. Note that a label need not be defined. Any children of the TreeNode (also
TreeNode objects themselves) are contained within curly braces { and }. To obtain child TreeNodes, use the normal array operator,
as described in the documentation for arrays and hashes.

Variables
Label The label of this TreeNode.

NumChildren The number of child TreeNodes belonging to this TreeNode object.

Tuplet
Derived from a BarObject.

Methods
AddNestedTuplet(posInTuplet, left, right, unit[, style[, bracket[,fullDuration]]]]) Nests a new tuplet bracket within an exist-
ing tuplet at a position relative to the duration and scale-factor of the existing tuplet. The left and right parameters specify the ratio of
the new tuplet, for example 3 (left) in the time of 2 (right). The unit parameter specifies the note value (in 1/256th quarters) on which
the tuplet should be based. For example, if you wish to create an eighth note (quaver) triplet group, you would use the value 128. The
optional style and bracket parameters take one of the pre-defined constants that affect the visual appearance of the created tuplet; see
Global Constants. If fullDuration is true, the bracket of the tuplet will span the entire duration of the tuplet. Returns the Tuplet object
created.

If AddNestedTuplet() has been given illegal parameters, it will not be able to create a valid Tuplet object. Therefore, you should
test for inequality of the returned Tuplet object with null before attempting to use it.
 Object Reference 90

AddNote(posInTuplet, pitch, duration[, tied[, diatonic pitch[, string number]]]]) Adds a note to an existing tuplet, adopting the
same voice number as used by the tuplet itself. Please note that posInTuplet is relative to the duration and scale-factor of the tuplet
bracket itself. Therefore, if you wanted to add a quarter note/crotchet to the second beat of a quarter note/crotchet triplet, you would sim-
ply use the value 256, not 341!

utils.SplitTuplet(tuplet,splitpoint) Split the Tuplet object tuplet at the specified splitpoint, which is a number in relation to
the tuplet’s parent bar. It then splits a nest of tuplets at that point in the bar. This method is provided by the utils.plg—see Utils.

Variables
Bracket The bracket type of the tuplet (such as. none, auto; see Global Constants).

FullDuration True if the bracket of the tuplet spans its entire duration.

Left The left side of the tuplet, for example 3 in 3:2 (read only).

ParentTupletIfAny If the tuplet intersects a tuplet, the innermost Tuplet object at that point in the score is returned. Otherwise,
null is returned (read only).

PlayedDuration The true rhythmic duration of the tuplet, for example for quarter-note (crotchet) triplet this would be the duration
of a minim (read only).

PositionInTuplet Returns the position of the tuplet relative to the duration and scale-factor of its parent tuplet. If the tuplet does
not intersect a tuplet, its position within the parent Bar is returned as usual (read only).

Right The right side of the tuplet, for example 2 in 3:2 (read only).

Style The style of the tuplet (for example, number, ratio, ratio + note; see Global Constants).

Text The text shown above the tuplet (read only).

Unit The unit used for the tuplet, for example 256 for a triplet of quarter notes (read only).

Utils
Sibelius installs a plug-in called utils.plg that contains a set of useful and common methods that can be called
directly by other plug-ins. It is not intended to be run as a plug-in in its own right, so does not appear in the Plug-ins menu.

Methods
The methods available via utils.plg are as follows:

utils.AbsoluteValue(value) Returns the absolute value of a number, that is its numerical value without regard to its sign.

utils.AddFractions(x,y) Adds two fractions x and y, passed in as ManuScript arrays. Returns an array with the result of the ad-
dition.

utils.BinaryString(x) Returns a binary string (such as “101010”) equivalent to the number x.

utils.bwAND(x, y) Equivalent to the C++ bitwise AND (&) operator. For example, utils.bwAND(129,1) is equal to 1.

utils.bwOR(x, y) Equivalent to the C++ bitwise inclusive OR (|) operator. For example, utils.bwOR(64,4) is equal to 68.

utils.bwXOR(x, y) Equivalent to the C++ bitwise exclusive XOR (^) operator. For example, utils.bwXOR(4,6) is equal to 2.

utils.CapableOfDeletion() Returns True if the object can be deleted using Delete(), which is determined by checking Si-
belius’s version number.

utils.CaseInsensitiveComparison(s1, s2) Returns True if the two strings s1 and s2 match, ignoring case.

utils.CastToBool(x) Returns the variable x explicitly cast as a Boolean.

utils.CastToInt(x) Returns the variable x explicitly cast as an integer.

utils.CastToStr(x) Returns the variable x explicitly cast as a string.
 Object Reference 91

utils.CombineArraysOfBool(arr1, arr2) Concatenates two arrays containing Boolean values and returns the result.

utils.CombineArraysOfInt(arr1, arr2) Concatenates two arrays containing integral values and returns the result.

utils.CombineArraysOfString(arr1, arr2) Concatenates two arrays containing string values and returns the result.

utils.CopyTextFile(source, dest) Copies an existing text file from one location to another, returning True if successful.

utils.CreateArrayBlanket(value, size) Returns an array with size elements, each containing a blanket value specified by the
first parameter.

utils.DeleteStaff(score, nth staff, retain selection) Deletes an entire staff and its content from a given score, returning True if
successful. If retain selection is True, Sibelius will ensure any item(s) that were selected prior to the staff’s deletion are still selected.

utils.DenaryValue(x) Returns a number in base 10 equivalent to binary number x, which must be provided as a string.

utils.DivideFractions(x,y) Divides fraction x by fraction y, passed in as ManuScript arrays. Returns an array with the result
of the division.

utils.ExtractFileName(filename) Returns just the filename portion of a string filename containing both a path and a filename.

utils.Format(str, [val1,val2,val3 ...]) Provides a simple means of replacing human-readable data types in a string. Each succes-
sive instance of %s in str is replaced with the value of the next remaining unused argument. for example s = utils.Format("The
%s brown %s jumps %s the lazy %s", "quick", "fox", "over", "dog");

utils.FormatTime(ms) Formats a time, given in milliseconds, to a human-readable string using the format mm’ss.z (where z is
centiseconds).

utils.FractionAsDecimal(x) Returns the decimal equivalent of the fraction x, which is passed in as an array.

utils.FractionDenominator(x) Returns the denominator of fraction x, which is passed in as an array.

utils.FractionNumerator(x) Returns the numerator of fraction x, which is passed in as an array.

utils.GetAppDir() Returns the path of the Sibelius executable as a string.

utils.GetArrayIndex(arr, value) Returns the index of value in the array arr, or -1 if it doesn’t exist in the array.

utils.GetBits(x) Returns an array containing the list of powers of two whose cumulative sum equates to the value of x.

utils.GetGlobalApplicationDataDir() Returns the path of the system’s global application data area as a string.

utils.GetLocationTime(score, barNum, position) Returns the precise time (in milliseconds) of a given location in a score. The
position should be local to the start of the bar number you have supplied. Use the utils library to achieve this if your plug-in needs to be
backwards compatible with Sibelius 4; otherwise call the Score object’s function with the same name.

utils.GetMillisecondsFromTime(time) If you pass in a time expressed in milliseconds (one minute being 60,000), this func-
tion returns the milliseconds portion of the number (in this case 60,000 modulus 1000 = 0).

utils.GetMinutesFromTime(time) If you pass in a time expressed in milliseconds, this function returns the minutes portion of
the number (for example if time = 120,262 milliseconds, this function returns 2).

utils.GetObjectTime(score,obj) Returns the precise time (in milliseconds) that the object obj occurs from the start of a given
score, taking into account tempo changes, performance markings and any other events in the score that have an effect on playback. Use
this method to achieve this if your plug-in needs to be backwards compatible with Sibelius 4; otherwise use the Time property of the
BarObject object whose time you wish to determine.

utils.GetPluginId(plug-in) This enables you to identify a plug-in by entering the line of code PluginUniqueID =
"someUniqueId"; in a plug-in’s Initialize method. When you pass a Plugin object to this function, it scans the plug-in’s code
and returns its unique ID if it has one, otherwise an empty string.

utils.GetSibeliusPluginsFolder() This is a wrapper around the deprecated GetPluginsFolder() function, and returns
the path of the Plugins folder.

utils.GetSibMajorVersion() Returns the major version number of Sibelius.

utils.GreatestCommonDivisor(m,n) Returns the greatest common divisor of two non-zero integers, that is the largest positive
integer that divides both numbers without remainder.
 Object Reference 92

utils.IsInArray(arr, value) Returns True if value exists in the array arr.

utils.IsNumeric(str[, integer only]) Returns True if the string str is numeric. Set the optional Boolean parameter integer only
to True if you want the method to only return True if str is an integer (so that you can disallow floating point numbers).

utils.LowerCase(str) Returns the ANSI string str in lowercase.

utils.MakeFraction(x,y) Creates a fraction with x as the numerator and y as the denominator. The fraction is returned as a nor-
mal ManuScript array. (Manipulating fractions means you never have to worry about rounding errors.)

utils.max(x,y) Returns the greater of two numbers.

utils.min(x,y) Returns the lesser of two numbers.

utils.MultiplyFractions(x,y) Multiplies fraction y by fraction x, passed in as ManuScript arrays. Returns an array with the re-
sult of the multiplication.

utils.PatternCount(pattern,str) Returns the number of times the substring pattern exists in str.

utils.Pos(subStr,str) Returns the zero-based position of the first instance of the sub-string subStr in str, or -1 if it isn’t found.

utils.PosReverse(subStr,str) Returns the zero-based position of the last instance of the sub-string subStr in str, or -1 if it isn’t
found.

utils.RaisePower(x,y) Raises x to the yth power, where y is a positive integer.

utils.Replace(inStr,toFind,replaceWith,replaceAll) Replaces a sub-string in a string with a new value. It looks for toFind in the
string inStr, and if it finds it, replaces it with replaceWith. If the Boolean replaceAll is False, it only changes the first instance found;
if it’s True, it replaces all instances.

utils.ReverseArrayOfBool(arr) Reverses the order of the elements in an array of Booleans.

utils.ReverseArrayOfInt(arr) Reverses the order of the elements in an array of integers.

utils.ReverseArrayOfString(arr) Reverses the order of the elements in an array of strings.

utils.RoundToNDecimalPlaces(number,precision) Returns a string containing the number rounded to precision decimal
places. The method handles the input as a string, in order to avoid rounding errors which would otherwise spoil results beyond the tenth
decimal place or so.

utils.SetDefaultIfNotInArray(value, arr, DefaultIndex) Scans the array arr for the value specified by the first parameter.
Value is returned if it exists in the array, otherwise, arr[DefaultIndex].

utils.shl(x,y) Bitwise left-shift. Shifts the value x left by y bits. Equivalent to C++ << operator.

utils.shr(x,y) Bitwise right-shift. Shifts the value x right by y bits. Equivalent to C++ >> operator.

utils.SortArray(arr,show progress) Sorts the array arr using a case-insensitive alphabetic sort. Set show progress to True to
see a progress bar while the sort is carried out, or set it to False if you don’t want to see a progress bar.

utils.SortArrayCustom(arr,show progress,plug-in name,method) Sorts the array arr using a custom sort order routine
method, which must be passed into this method. plug-in name is the name of the plug-in that contains the sort order routine method. You
can write your own sort order routine: it must be a method that takes two strings (strA and strB) and returns 1 or 0 based on the results
of the comparison.

utils.SortArrayNumeric(arr,show progress) Sorts the array arr in ascending numeric order. Set show progress to True to see
a progress bar while the sort is carried out, or set it to False if you don’t want to see a progress bar.

utils.SplitTuplet(tuplet,splitpoint) Split the Tuplet object tuplet at the specified splitpoint, which is a number in relation to
the tuplet’s parent bar. It then splits a nest of tuplets at that point in the bar.

utils.StartComponentManager(componentName,callbackFunc) Returns an array of filenames (strings) found on the system
inside a folder with a given name, following the same rules of precedence as Sibelius’s internal component manager. Files in the user’s
application data area take priority over those in the global application data area, followed lastly by those in the Sibelius’s application di-
rectory itself.

callbackFunc should point to a function in the calling script that scans a supplied directory for files with a specific extension.
 Object Reference 93

Such a function might look something like this:
GetFooFiles(dir) { // This is the function signature
 components = CreateArray();
 for each FOO file in dir {
 components[components.NumChildren] = file.NameWithExt;
 }
 return(components);
}

In the scenario above, the call to start the component manager would look like this (where “Foo Files” is the name of the directory con-
taining your files):

files = utils.StartComponentManager("Foo Files",
"myPlugin.GetFooFiles");

utils.SubtractFractions(x,y) Subtracts fraction y from fraction x, passed in as ManuScript arrays. Returns an array with the
result of the subtraction.

utils.UpperCase(str) Returns the ANSI string str in uppercase.

VersionHistory
Each Score object has a VersionHistory object (obtained by way of the score.GetVersions() method), which in turn provides
a list of Version objects. Each Version object represents a specific version, and also provides a list of VersionComment objects,
which represent the per-version comments (as opposed to bar-attached comments, which are represented to ManuScript as Comment
objects, derived from BarObject objects).

Methods
AddVersion([name[,comment]]) Adds a new Version object and returns it if successful (or null if not), with an optional name and
comment for the version.

DeleteNthVersion(n) Deletes the nth Version object, returning True if successful.

GetNthVersion(n) Returns the nth Version object.

Variables
NumChildren Returns the number of versions in the score’s VersionHistory object.

Version
Accessed via a Score object’s VersionHistory object.

Methods
AddComment(text) Adds a new comment with the specified text, and returns the VersionComment object created.

Close() Closes all views of the version that are currently open in Sibelius, returning True if it has actually closed anything.

GetNthComment(n) Gets the nth comment as a VersionComment object, or returns null if the index is out of range.

DeleteNthComment(n) Deletes the nth comment, returning True if successful, or null if the index is out of range.

OpenAndReturnScore() Opens the specified version in Sibelius (if it’s not already open) and returns its Score object.
 Object Reference 94

Variables
EndDate Returns a DateTime object representing the version’s end date (read only). IsOpen returns True if the version is currently
open in Sibelius (read only).

Name Returns the name of the version (read/write).

NumComments Returns the number of comments in the version (read only).

StartDate Returns a DateTime object representing the version’s start date (read only).

VersionComment
Accessed via Version objects.

Methods
None.

Variables
Text Returns or changes the text of the comment, and this cannot be undone (read/write).

TimeStamp Returns a DateTime object representing the time at which the comment was created.

UserName Returns the name of the user who created the comment (read only).
 Object Reference 95

Command IDs

The following is a complete list of Command IDs that can be passed to the Sibelius.Execute() method.
CommandID Command Name

128th_note 128th note

16_tremolos 16 tremolos

16th_note 16th note (semiquaver)

256th_note 256th note

2_tremolos 2 tremolos

32_tremolos 32 tremolos

32nd_note 32nd note (demisemiquaver)

4_tremolos 4 tremolos

512th_note 512th note

64th_note 64th note (hemidemisemiquaver)

8_tremolos 8 tremolos

8th_note Eighth note (quaver)

accent Accent

accessibility_preferences Accessibility Settings

acciacatura Acciaccatura

add_2nd_above Add interval 2nd above

add_3rd_above Add interval 3rd above

add_4th_above Add interval 4th above

add_5th_above Add interval 5th above

add_6th_above Add interval 6th above

add_7th_above Add interval 7th above

add_9th_above Add interval 9th above

add_dynamic_guitar_staff Add dynamic guitar staves

add_bar_at_end Bar at End

add_multiple_bars Other Bar

add_octave_above Add interval an octave above

add_ossia_above Add Ossia Above

add_ossia_below Add Ossia Below

add_single_bar Single Bar

add_stave_above Add Staff Above

add_stave_below Add Staff Below

add_unison Add unison
 Command IDs
add_video Add Video

advance_caret Advance Caret

advanced_filter Advanced Filter

align_horizontally Align in a Column

align_staves Align Staves

align_vertically Align in a Row

annotate Annotate

append_score Append Score

appoggiatura Appoggiatura

arpeggio Arpeggio

arpeggio_down Arpeggio Down

arpeggio_up Arpeggio Up

arrange Arrange

auto_breaks Auto Breaks

bar_number_change Bar Number Change

bar_rest Bar Rest

barline_between_staves Between Staves Barline

barline_dashed Dashed Barline

barline_double Double Barline

barline_end_repeat End Repeat Barline

barline_final Final Barline

barline_invisible Invisible Barline

barline_normal Normal Barline

barline_short Short Barline

barline_start_repeat Start Repeat Barline

barline_ticks Tick Barline

brace Brace

bracket Bracket

bracket_accidental Bracket accidental

bracket_notehead Bracket notehead

buzz_roll Buzz roll (Z on stem)

calibrate_live_tempo Calibrate Live Tempo

cancel_stop_selectnone Cancel/Stop/Select None
96

cascade Cascade

change_appearance_current_part Change Current Part Appear-
ance

change_appearance_of_all_parts Change Appearance of All
Parts

change_appearance_of_open_parts Change Appearance of
Open Parts

change_tie_style Next tie style

chord_diagram_toggle Add/Remove Chord Diagram

chord_symbols Chord Symbol

chord_text_root_toggle Add/Remove Chord Text Root

chord_text_toggle Add/Remove Chord Text

clear_live_tempo Clear Live Tempo

clef_dialog Show Clef dialog

clefs Clef

close_all Close All

close_tab Close Tab

close_window Close Window

color Color

color_note_none Note Colors None

color_note_voices Voice Colors

color_out_of_range_notes Notes out of Range

command_search Activate Command Search

comment Comment

compare_window Compare

configure_live_tempo Configure Live Tempo

consecutive_rehearsal_mark Rehearsal Mark (consecutive)

copy Copy

copy_and_change_instrument_in_part Copy and Change In-
strument

copy_as_idea Capture Idea

copy_part_layout Copy Part Layout

create_highlight Highlight

create_hitpoint Create Hit Point

create_live_tempo_tap_point Create Live Tempo Tap Point

create_new_part Create New Part

create_pitch_a Create A

create_pitch_b Create B

create_pitch_c Create C
 Command IDs
create_pitch_d Create D

create_pitch_e Create E

create_pitch_f Create F

create_pitch_g Create G

create_title_page Title Page

cross_stave_move_down Move Down a Staff

cross_stave_move_up Move Up a Staff

cross_stave_reset Move to Original Staff

custom_articulation1 Custom Articulation 1

custom_articulation2 Custom Articulation 2

custom_articulation3 Custom Articulation 3

cut Cut

decrease_instrument_stave_size Decrease Instrument Staff
Size

decrease_spacing Decrease Spacing

decrease_spacing_a_lot Decrease Spacing a Lot

default_positions Default Positions

delete Delete

delete_bar Delete Bar

delete_current_part_or_subset Delete current part or subset

delete_part Delete Part

document_setup Document Setup

doit Doit

double_dot Double dot

double_flat Double flat

double_sharp Double sharp

double_whole_note Double whole note (breve)

downbow Downbow

duplet Duplet

edit_noteheads Notehead type gallery

edit_all_fonts Edit All Fonts

edit_arrange_styles Edit Arrange Styles

edit_chord_diagram Edit Chord Diagram

edit_chord_symbols Edit Chord Symbols

edit_hitpoints Hit points

edit_instruments Edit Instruments

edit_lines Edit Lines
97

edit_plugins Edit Plug-ins

edit_staves_in_part Edit Staves in Part

edit_symbols Edit Symbols

edit_text Edit Text

edit_text_styles Edit Text Styles

edit_worksheets Edit Worksheets

end_beam End beam

end_line End line

end_slur End slur

engraving_rules Engraving Rules

equivalent_chord_text Equivalent Chord Text

exit_program Exit

export_as_audio Export Audio

export_as_graphic Export Graphics

export_as_manuscript_paper Export Manuscript Paper

export_as_midi Export MIDI File

export_as_musicxml Export MusicXML

export_as_older_version Export Previous Sibelius Version

export_as_pdf Export PDF

export_as_sib_student Export Sibelius Student file

export_as_video Export Video File

export_house_style Export House Style

extend_selection_down Extend Selection Down

extend_selection_left Extend Selection Left

extend_selection_right Extend Selection Right

extend_selection_to_bottom_staff Extend Selection to Bottom
Staff

extend_selection_to_end_of_bar Extend Selection to End of
Bar

extend_selection_to_start_of_bar Extend Selection to Start of
Bar

extend_selection_up Extend Selection Up

extend_selection_to_top_of_staff Extend Selection to Top of
Staff

extract_parts Extract Parts

fall Fall

fast_forward Fast-forward

feathered_beam_accel Feathered beam accel.

feathered_beam_rit Feathered beam rit.
 Command IDs
filter_2nd_note 2nd from Top

filter_2nd_note_for_deletion Filter 2nd from Top (For Deletion)

filter_2nd_or_single_note_for_deletion Filter 2nd Note or Sin-
gle Notes (For Deletion)

filter_2nd_pr_single_note Filter 2nd Note or Single Notes (For
Copying)

filter_3rd_note 3rd from Top

filter_3rd_note_for_deletion Filter 3rd from Top (For Deletion)

filter_3rd_or_single_note Filter 3rd Note or Single Notes (For
Copying)

filter_3rd_or_single_note_for_deletion Filter 3rd Note or Single
Notes (For Deletion)

filter_all_barlines Filter All Barlines

filter_bar_numbers Filter Bar Numbers

filter_bottom_note Bottom Note

filter_bottom_note_for_deletion Filter Bottom Note (For Dele-
tion)

filter_bottom_or_single_note Filter Bottom Note or Single
Notes (For Copying)

filter_bottom_or_single_note_for_deletion Filter Bottom Note
or Single Notes (For Deletion)

filter_chord_symbols Filter Chord Symbols

filter_comments Filter Comment items

filter_dynamics Filter Dynamics

filter_expression_text Filter Expression Text

filter_grace_notes Filter Grace Notes

filter_hairpins Filter Hairpins

filter_hidden_objects Filter Hidden Objects

filter_instrument_changes Filter Instrument Changes

filter_lyrics Filter Lyrics

filter_nonspecial_barlines Filter Non-Special Barlines

filter_non_tied_notes Filter notes that are not tied or that start a
tie

filter_notes_and_chords Filter Notes and Chords

filter_page_numbers Filter Page Numbers

filter_pedal_lines Filter Pedal Lines

filter_player1 Filter Player 1 (For Deletion)

filter_player2 Filter Player 2 (For Deletion)

filter_rehearsal_marks Filter Rehearsal Marks

filter_repeat_bars Filter Repeat Bars
98

filter_rests Filter Rests

filter_slurs Filter Slurs

filter_special_barlines Filter Special Barlines

filter_staff_text Filter Staff Text

filter_symbols Filter Symbols

filter_system_text Filter System Text

filter_technique_text Filter Technique Text

filter_top_note Top Note

filter_top_note_for_deletion Filter Top Note (For Deletion)

filter_top_or_single_note Filter Top Note or Single Notes (For
Copying)

filter_top_or_single_note_for_deletion Filter Top Note or Sin-
gle Notes (For Deletion)

filter_tuplets Filter Tuplets

filter_voice1 Filter Voice 1

filter_voice1_only Filter Voice 1 Only

filter_voice2 Filter Voice 2

filter_voice2_only Filter Voice 2 Only

filter_voice3 Filter Voice 3

filter_voice3_only Filter Voice 3 Only

filter_voice4 Filter Voice 4

filter_voice4_only Filter Voice 4 Only

find Find

find_next Find Next

find_next_collision Find Next Collision

find_next_comment Find Next Comment

find_previous_collision Find Previous Collision

find_previous_comment Find Previous Comment

flat Flat

flexitime_input Flexi-time Input

flexitime_options Flexi-time Options

flip Flip

focus_on_staves Focus on Staves

freeze_magnetic_layout_positions Freeze Magnetic Layout Po-
sitions

fretboard_window Fretboard

full_screen Full Screen

goto_bar Go to Bar
 Command IDs
goto_page Go to Page

goto_playback_line Go to Playback Line

goto_selection_end Go to selection end

goto_selection_start Go to selection start

graphic_adjust_color Adjust Colours

graphic_change_link_source Change Link Source

graphic_flip_horizontal Flip Horizontal

graphic_flip_vertical Flip Vertical

graphic_rotate_180 Rotate 180 degrees

graphic_rotate_270 Rotate 90 degrees CCW

graphic_rotate_90 Rotate 90 degrees CW

graphics Graphic

guitar_scale_diagram Guitar Scale Diagram

half_note Half note (minim)

harmonic_circle Harmonic/Open

hide_all_invisibles Hide All Invisibles

hide_all_panels Hide Tool Windows

hide_empty_staves Hide Empty Staves

hide_show_accidentals_toggle Hide or show accidentals

hide_show_toggle Hide or Show

ideas_window Ideas

import_file Import

import_house_style Import House Style

import_lyrics Create Lyrics From Text File

increase_instrument_stave_size Increase Instrument Staff Size

increase_spacing Increase Spacing

increase_spacing_a_lot Increase Spacing a Lot

input_notes Input Notes

install_plugins Install Plug-ins

instrument_and_stave_dialog Instruments and Staves

instrument_change Instrument Change

keep_bars_together Keep Bars Together

key_signature_dialog Show Key Signature dialog

key_signatures Key Signature

keyboard_window Keyboard

keypad Keypad

keypad0 0 on keypad
99

keypad1 1 on keypad

keypad2 2 on keypad

keypad3 3 on keypad

keypad4 4 on keypad

keypad5 5 on keypad

keypad6 6 on keypad

keypad7 7 on keypad

keypad8 8 on keypad

keypad9 9 on keypad

keypad_*(Windows)_/(Mac)

keypad_+ '+' on keypad

keypad_-(Mac)

keypad_-(Windows)_*(Mac)

keypad_. .' on keypad

keypad_/(Windows)_=(Mac)

keypad_ente Enter on keypad

keypad_first_layout First keypad layout

keypad_next_layout Next keypad layout

keypad_palette1 Common notes

keypad_palette2 More notes

keypad_palette3 Beams/tremolos

keypad_palette4 Articulations

keypad_palette5 Jazz Articulations

keypad_palette6 Accidentals

lines Line

lines_dialog Show Lines dialog

live_playback Live Playback

live_playback_velocities Live Playback Velocities

live_tempo_tap_points Live Tempo Tap Points

lock_format Lock Format

long Long

magnetic_layout_off Turn off Magnetic Layout for item

magnetic_layout_on Turn on Magnetic Layout for item

magnetic_layout_options Magnetic Layout Options

make_into_bar Make Into Bar

make_into_page Make Into Page

make_into_score_subset Make into score subset
 Command IDs
make_into_system Make Into System

manuscript_language_reference ManuScript Language Refer-
ence

marcato Marcato

mid_beam Middle of beam

minimize_expand_ribbon Minimize/Expand Ribbon

minimize_window Minimize Window

mixer Mixer

move_down_chromatically Move Down Chromatically

move_instruments_down Move Instruments Down

move_instruments_up Move Instruments Up

move_object_down Move Object Down

move_object_down_a_lot Move Object Down a Lot

move_object_left Move Object Left

move_object_left_a_lot Move Object Left a Lot

move_object_right Move Object Right

move_object_right_a_lot Move Object Right a Lot

move_object_up Move Object Up

move_object_up_a_lot Move Object Up a Lot

move_playback_to_selection Move Playback Line to Selection

move_screen_left_a_bit Move Screen Left a Bit

move_screen_right_a_bit Move Screen Right a Bit

move_selection_to_playback Move Selection to Playback Line

move_staff_down_a_lot Move Staff Down a Lot (absolute)

move_staff_down_select_note_next_voice Move Staff Down
(absolute) and Select Note in Next Voice

move_staff_down_relative Move Staff Down (relative)

move_staff_down_relative_a_lot Move Staff Down a Lot (rela-
tive) and Select Note in Staff Below

move_staff_up_a_lot Move Staff Up a Lot (absolute)

move_staff_up_select_note_previous_voice Move Staff Up
(absolute) and Select Note in Previous Voice

move_staff_up_relative Move Staff Up (relative)

move_staff_up_relative_a_lot Move Staff Up a Lot (relative)
and Select Note in Staff Above

move_up_chromatically Move Up Chromatically

natural Natural

natural_flat Natural flat

natural_sharp Natural sharp
100

nav_down Move stave down (relative) and Select part of object
below

nav_up Move stave up (relative) / Select part of object above

navigator Navigator

new_file New

new_window New Window

next_part Next Part

next_window_tab Select Next Tab

no_beam No beam

nonuplet Nonuplet

note_spacing_rules Note Spacing Rule

notehead_0 Notehead 0

notehead_1 Notehead 1

notehead_2 Notehead 2

notehead_3 Notehead 3

notehead_4 Notehead 4

notehead_5 Notehead 5

notehead_6 Notehead 6

notehead_7 Notehead 7

notehead_8 Notehead 8

notehead_9 Notehead 9

noteheads Edit Noteheads

object_rulers Object Rulers

octuplet Octopus

open_file Open

optimize_staff_spacing Optimize Staff Spacing

ordering_move_back Send Back

ordering_move_forward Bring Forward

ordering_move_to_back Send to Back

ordering_move_to_front Bring to Front

ordering_reset_to_default Reset to Default Order

override_pitch_before_duration Override pitch before duration

page_bottom Move bottom of page

page_break Page Break

page_down Move down full screen

page_down_a_bit Move page down a bit

page_first Move to first page

page_last Move to last page
 Command IDs
page_left Move left full screen

page_number_change Page Number Change

page_right Move right full screen

page_top Move to top of page

page_up Move up full screen

page_up_a_bit Move page up a bit

panorama_view Panorama

paste Paste

paste_as_cue Paste as Cue

pause Fermata (pause)

performance_interpretation Performance

play/stop Play/Stop

play/stop_or_extend_line Play/Stop or snap line/lyric to next
note

play_from_selection Play From Selection

play_half_speed_extend_lines Play at half-speed or snap
line/lyric to previous note

play_live_tempo Live Tempo

playback_all_notes_off All Notes Off

playback_backward_one_frame Move backward a single frame

playback_devices Playback Devices

playback_dictionary Playback Dictionary

playback_forward_one_frame Move forward a single frame

playback_line_to_end Move Playback Line to End

playback_line_to_start Move Playback Line to Start

playback_stop Stop

plop Plop

plus Plus/Closed

prebend_note Pre-bend note

preferences Preferences

previous_part Previous Part

previous_window_tab Select Previous Tab

print Print

print_all_parts Print All Parts

print_copies_of_parts Print Copies of Parts

print_dialog OS Print Dialog

publish_to_score_exchange Publish to Score Exchange

quadruplet Quadruplet
101

quarter_flat Quarter flat

quarter_note Quarter note (crotchet)

quarter_sharp Quarter sharp

quick_start Quick Start

quintuplet Quintuplet

reapply_color Reapply Color

rebeam Re-beam

record_live_tempo Record Live Tempo

record_with_audioscore Record with AudioScore

redo Redo

redo_dialog Redo History

remove_accidental Remove accidentals

remove_articulation Remove articulations

remove_staves Remove Staves

repeat Repeat

repeat_2_bars 2 bar Repeat Bar

repeat_4_bars 4 bar Repeat Bar

repeat_bar Repeat Bar

repeat_interpretation Repeats

repitch Re-input Pitches

replay Replay

reset_beam_groups Reset Beam Groups

reset_design Reset Design

reset_magnetic_layout Use default Magnetic Layout settings

reset_note_spacing Reset Note Spacing

reset_position Reset Position

reset_space_above_staff Reset Space Above Staff

reset_space_below_staff Reset Space Below Staff

reset_stems_and_beam_positions Reset Stems and Beam Posi-
tions

reset_tab_fingering Reset Guitar Tab Fingering

reset_to_score_design Reset to Score Design

reset_to_score_position Reset to Score Position

respell Respell Accidental/Edit Text

respell_chord_text Respell Chord Text

rest Rest

restart_rehearsal_marks Restart Rehearsal Marks

revoice_chord_diagram Revoice Chord Diagram
 Command IDs
rewind Rewind

rhythm_dot Rhythm dot

save Save

save_all Save All

save_as Save As

save_as_worksheet Add to Worksheet Creator

scan_with_photoscore Scan with PhotoScore

scoop Scoop

score_info Score Info

scrub_backwards Scrub Backward

scrub_forward Scrub Forward

select_all Select All

select_bars Select Bars

select_graphic Select Graphic

select_more Select More

select_next_fragment Select Next Part of Object

select_next_note Move Object Right/Select Next Note

select_next_object Select Next Object

select_next_system_object Select Next System Object

select_none Select None

select_previous_fragment Select Previous Part of Object

select_previous_note Move Object Left/Select Previous Note

select_previous_object Select Previous Object

select_previous_system_object Select Previous System Object

select_system_passage Select System Passage

section_end Section End

selection_rulers Selection Rulers

septuplet Septuplet

sextuplet Sextuplet

sharp Sharp

show_annotations View Annotations

show_attachment_lines Attachment Lines

show_bar_numbers Staff Names and Bar Numbers

show_comments View Comments

show_differences_between_versions View Differences Be-
tween Versions

show_differences_in_parts Differences In Parts
102

show_empty_staves Show Empty Staves

show_handles Handles

show_hidden_objects Hidden Objects

show_highlights Highlights

show_in_all Show in All

show_in_parts Show in Parts

show_in_score Show in Score

show_inspector Inspector

show_layout_marks Layout Marks

show_magnetic_layout_collisions Magnetic Layout Collisions

show_magnetic_layout_groups View Magnetic Layout Groups

show_magnetic_layout_original_positions View Magnetic
Layout Original Positions

show_page_margins Page Margins

show_playback_line Playback Line

show_plugin_trace Show Plugin Trace Window

show_replay_marker Replay Line

sibelius_help Sibelius Help

sibelius_tutorials Sibelius Tutorials

single_pages_horizontally Single Pages Horizontally

single_pages_vertically Single Pages Vertically

slide Slide

slide_notes_or_rests_left Slide notes or rests left

slide_notes_or_rests_right Slide notes or rests right

snap_line_next_note Snap line/lyric to next note

special_page_break Special Page Break

split_multirest Split Multirest

split_system Split System

spreads_horizontally Spreads Horizontally

spreads_vertically Spreads Vertically

squarepause Long fermata

staccatissimo Staccatissimo

staccato Staccato

staff_rulers Staff Rulers

start_beam Start beam

start_sub_beam Start secondary beam

stemlet Stemlet

subbracket Sub-bracket
 Command IDs
suppress_auto_cautionary_accidental Suppress auto caution-
ary accidental

swap_voices_1_and_2 Swap Voices 1 and 2

swap_voices_1_and_3 Swap Voices 1 and 3

swap_voices_1_and_4 Swap Voices 1 and 4

swap_voices_2_and_3 Swap Voices 2 and 3

swap_voices_2_and_4 Swap Voices 2 and 4

swap_voices_3_and_4 Swap Voices 3 and 4

switch_between_full_score_and_parts Switch Between Full
Score and Part

symbols Symbol

symbols_dialog Show symbols dialog

system_break System Break

system_break_respell_edit_text System Break/Respell Acci-
dental/Edit Text

system_object_positions System Object Positions

tab_fret_number0 Fret number 0 on tab

tenuto Tenuto

text_styles Text Style

three_quarter_flat Three quarter flat

three_quarter_sharp Three quarter sharp

tie Tie

tie_into Tie Into

tile_horizontally Tile Horizontally

tile_vertically Tile Vertically

time_signature_dialog Show Time Signature dialog

time_signatures Time Signature

timecode_and_duration Timecode and Duration

timeline Timeline

toggle_auto_optimize Switch Auto-Optimize on / off

toggle_cue_size Cue size (on/off)

toggle_loop_mode Loop

toggle_lv_tie Toggle L.V. tie

toggle_magnetic_layout Switch magnetic layout on / off

toggle_notes/rests Toggle Notes/Rests

toggle_review_mode Toggle Review Mode

toggle_sticky_tuplet Toggle sticky tuplet

tranposing_score Transposing Score
103

transform_live_playback Transform Live Playback

transport Transport

transpose Transpose

tremolo_with_next_note Tremolo with next note

tripause Short fermata

triple_dot Triple dot

triplet Triplet

tuplet Tuplet

turn_note_into_grace_note Turn note into gracenote

undo Undo

undo_dialog Undo History

unlock_format Unlock Format

upbow Upbow

use_multirests Use Multirests

versions_edit Edit Versions

versions_export_current Export Current Version

versions_export_log Export Version Log

versions_make_current Make Current Version

versions_save Save Version

versions_show_next Show Next Version

versions_show_previous Show Previous Version

video_double_size Double Size

video_fullscreen Full Screen

video_half_size Half Size

video_normal_size Full Size

video_window Video

view_live_tempo View Live Tempo

voice1 Voice 1

voice2 Voice 2

voice3 Voice 3

voice4 Voice 4

voice_all Voice All

wedge Wedge

whats_new What's New

whole_note Whole note (semibreve)

worksheet_creator Worksheet Creator

zoom_100% Zoom 100%
 Command IDs
zoom_12.5% Zoom 12.5%

zoom_125% Zoom 125%

zoom_150% Zoom 150%

zoom_200% Zoom 200%

zoom_25% Zoom 25%

zoom_300% Zoom 300%

zoom_37.5% Zoom 37.5%

zoom_400% Zoom 400%

zoom_50% Zoom 50%

zoom_62.5% Zoom 62.5%

zoom_75% Zoom 75%

zoom_800% Zoom 800%

zoom_87.5% Zoom 87.5%

zoom_actual_size Zoom to actual size

zoom_edit Zoom

zoom_in Zoom In

zoom_out Zoom Out

zoom_to_fit Zoom to fit page

zoom_to_fit_page Zoom Window

zoom_to_fit_two_pages Zoom to fit 2 pages

zoom_to_page_height Zoom to page height

zoom_to_page_width Zoom to fit page width

zoom_to_system_width Zoom to system width
104

Global Constants

Global Constants
These are useful variables held internally within ManuScript and are accessible from any plug-in. They are called "constants" be-
cause you are encouraged not to change them.

Many of the constants are the names of note values, which you can use to specify a position in a bar. For example, instead of writing
320 you can write Quarter+Sixteenth or equally Crotchet+Semiquaver.

Truth Values

Measurements

Positions and Durations

True 1

False 0

Space 32

StaffHeight 128

Long 4096

Breve 2048

DottedBreve 3072

Whole or Semibreve 1024

DottedWhole 1536

Half or Minim 512

DottedHalf or DottedMinim 768

Quarter or Crotchet 256

DottedQuarter or DottedCrotchet 384

Eighth or Quaver 128

DottedEighth or DottedQuaver 192

Sixteenth or Semiquaver 64

DottedSixteenth or DottedSemiquaver 96

ThirtySecond or Demisemiquaver 32

DottedThirtySecond or DottedDemisemiquaver 48

SixtyFourth or Hemidemisemiquaver 16

DottedSixtyFourth or DottedHemidemisemiquaver 24
 Global Constants 105

Style Names
For the ApplyStyle() method of Score objects. Instead of the capitalized strings in quotes, you can use the equivalent variables
in mixed upper and lower case. Note again that the constant HOUSE refers to the options in House Style > Engraving Rules and
Layout > Document Setup only; to apply the entire House Style, use the ALLSTYLES constant.

Bar Number Formats
These constants can be used for the format argument of the AddBarNumber method.

Text Styles
Here is a list of all the text style identifiers which are guaranteed to be present in any score in Sibelius. In previous versions of Manu-
Script text styles were identified by a numeric index; this usage has been deprecated but will continue to work for old plug-ins. New
plug-ins should use the identifiers given below. For each style we first give the English name of the style and then the identifier.

OneHundredTwentyEighth or Semihemidemisemiquaver 8

DottedOneHundredTwentyEighth or DottedSemihemidemisemiquaver 12

Engraving Rules "ENGRAVINGRULES" Document Setup "DOCSETUP"

House "HOUSE" Dictionary "DICTIONARY"

Text "TEXT" SpacingRule "SPACINGRULE"

Symbols "SYMBOLS" CustomChordNames "CUSTOMCHORDNAMES"

Lines "LINES" DefaultPartAppearance "DEFAULTPARTAPPEARANCE"

Noteheads "NOTEHEADS" InstrumentsAndEnsembles "INSTRUMENTSANDENSEMBLES"

Clefs "CLEFS" AllStyles "ALLSTYLES"

BarNumberFormatNormal 0

BarNumberFormatNumberLetterLower 1

BarNumberFormatNumberLetterUpper 2

Instrument
names

"text.instrumentname" Time signatures
(one staff only)

"text.staff.timesig.onestaffonly"

1st and 2nd
endings

"text.staff.1st_n_2nd_endings"
Tuplets

"text.staff.tuplets"

Auto page
break
warnings

"text.staff.autopagebreak.warnings"
Bar numbers

"text.system.barnumber"

Boxed text "text.staff.boxed" Metronome mark "text.system.metronome"

Expression
"text.staff.expression" Multirests

(numbers)
"text.system.multirestnumbers"

Chord
diagram
fingering

"text.staff.fingering.chord_diagrams"
Composer

"text.system.page_aligned.composer"

Footnote
"text.staff.footnote" Composer

(on title page)
"text.system.page_aligned.composer.ontitlepage"

Block lyrics "text.staff.lyrics.block" Copyright "text.system.page_aligned.copyright"
 Global Constants 106

Multirests
(tacet)

"text.staff.multirests.tacet"
Dedication

"text.system.page_aligned.dedication"

Plain text
"text.staff.plain" Footer (inside

edge)
"text.system.page_aligned.footer.inside"

Small text
"text.staff.small" Footer

(outside edge)
"text.system.page_aligned.footer.outside"

Chord
symbol

"text.staff.space.chordsymbol" Worksheet
footer
(first page, l)

"text.system.page_aligned.footer.worksheet.left"

Figured
bass

"text.staff.space.figuredbass"
Header

"text.system.page_aligned.header"

Fingering
"text.staff.space.fingering" Worksheet

header
(first page, l)

"text.system.page_aligned.header.worksheet.left"

Chord
diagram fret

"text.staff.space.fretnumbers" Worksheet
header
(first page, r)

"text.system.page_aligned.header.worksheet.right"

Lyrics above
staff

"text.staff.space.hypen.lyrics.above" Header
(after first page)

"text.system.page_aligned.header_notp1"

Lyrics
(chorus)

"text.staff.space.hypen.lyrics.chorus" Header
(after first page,
inside edge)

"text.system.page_aligned.header_notp1.inside"

Lyrics line 1
"text.staff.space.hypen.lyrics.verse1" Instrument name

at top left
"text.system.page_aligned.instrnametopleft"

Lyrics line 2 "text.staff.space.hypen.lyrics.verse2" Lyricist "text.system.page_aligned.lyricist"

Lyrics line 3 "text.staff.space.hypen.lyrics.verse3" Page numbers "text.system.page_aligned.pagenumber"

Lyrics line 4 "text.staff.space.hypen.lyrics.verse4" Subtitle "text.system.page_aligned.subtitle"

Lyrics line 5 "text.staff.space.hypen.lyrics.verse5" Title "text.system.page_aligned.title"

Nashville
chord
numbers

"text.staff.space.nashvillechords"
Title
(on title page)

"text.system.page_aligned.title.ontitlepage"

Common
symbols

"text.staff.symbol.common"
Rehearsal mark

"text.system.rehearsalmarks"

Figured
bass
(extras)

"text.staff.symbol.figured.bass.extras"
Repeat (D.C./
D.S./To Coda)

"text.system.repeat"

Note tails "text.staff.symbol.noteflags" Tempo "text.system.tempo"

Special
noteheads

"text.staff.symbol.noteheads.special"
Timecode

"text.system.timecode"

Percussion
instruments

"text.staff.symbol.percussion" Duration at end
of score

"text.system.timecode.duration"

Special
symbols

"text.staff.symbol.special"
Hit points

"text.system.timecode.hitpoints"

Tablature
letters

"text.staff.tab.letters" Time signatures
(huge)

"text.system.timesig.huge"

Tablature
numbers

"text.staff.tab.numbers" Time signatures
(large)

"text.system.timesig.large"
 Global Constants 107

Line Styles

Technique "text.staff.technique" Time signatures "text.system.timesig.normal"

Arpeggio
"line.staff.arpeggio" Bracketed slur

below
"line.staff.slur.down.bracketed"

Arpeggio down "line.staff.arpeggio.down" Dashed slur below "line.staff.slur.down.dashed"

Arpeggio up "line.staff.arpeggio.up" Dotted slur below "line.staff.slur.down.dotted"

Unused 2 "line.staff.arrow" Slur above "line.staff.slur.up"

Arrow
"line.staff.arrow.black.right" Bracketed slur

above
"line.staff.slur.up.bracketed"

Dashed arrow "line.staff.arrow.black.right.dashed" Dashed slur above "line.staff.slur.up.dashed"

Double arrow "line.staff.arrow.black.right.left" Dotted slur above "line.staff.slur.up.dotted"

Vertical arrow (2)
"line.staff.arrow.black.vertical" String indicator

above (1)
"line.staff.string.above.1"

White arrow
"line.staff.arrow.white.right" String indicator

above (2)
"line.staff.string.above.2"

Dashed white
arrow

"line.staff.arrow.white.right.dashed" String indicator
above (3)

"line.staff.string.above.3"

Double white
arrow

"line.staff.arrow.white.right.left" String indicator
above (4)

"line.staff.string.above.4"

Vertical arrow
"line.staff.arrow.white.vertical" String indicator

above (5)
"line.staff.string.above.5"

Beam
"line.staff.beam" String indicator

above (6)
"line.staff.string.above.6"

Guitar Bend
"line.staff.bend" String indicator

above (7)
"line.staff.string.above.7"

Guitar hold bend
"line.staff.bend.hold" String indicator

above (8)
"line.staff.string.above.8"

Box
"line.staff.box" String indicator

below (1)
"line.staff.string.below.1"

Bracket above
"line.staff.bracket.above" String indicator

below (2)
"line.staff.string.below.2"

Bracket above
(end)

"line.staff.bracket.above.end" String indicator
below (3)

"line.staff.string.below.3"

Bracket above
(start)

"line.staff.bracket.above.start" String indicator
below (4)

"line.staff.string.below.4"

Bracket below
"line.staff.bracket.below" String indicator

below (5)
"line.staff.string.below.5"

Bracket below
(end)

"line.staff.bracket.below.end" String indicator
below (6)

"line.staff.string.below.6"

Bracket below
(start)

"line.staff.bracket.below.start" String indicator
below (7)

"line.staff.string.below.7"

Vertical bracket
"line.staff.bracket.vertical" String indicator

below (8)
"line.staff.string.below.8"
 Global Constants 108

Vertical bracket 2 "line.staff.bracket.vertical.2" Tie "line.staff.tie"

Dashed line "line.staff.dashed" Trill "line.staff.trill"

Vertical dashed
line

"line.staff.dashed.vertical"
Tuplet

"line.staff.tuplet"

Dotted line "line.staff.dotted" Vertical line "line.staff.vertical"

Glissando
(straight)

"line.staff.gliss.straight"
Vibrato

"line.staff.vibrato"

Glissando (wavy) "line.staff.gliss.wavy" Guitar vibrato bar "line.staff.vibrato.bar"

Guitar effect "line.staff.guitareffect" Wide vibrato "line.staff.vibrato.wide"

Crescendo "line.staff.hairpin.crescendo" Dashed system line "line.system.dashed"

Bracketed
crescendo

"line.staff.hairpin.crescendo.bracketed" Wide dashed
system line

"line.system.dashed.wide"

Dashed crescendo "line.staff.hairpin.crescendo.dashed" 1st ending "line.system.repeat.1st"

Dotted crescendo "line.staff.hairpin.crescendo.dotted" 1st and 2nd ending "line.system.repeat.1st_n_2nd"

Crescendo from
silence

"line.staff.hairpin.crescendo.fromsilence"
2nd ending

"line.system.repeat.2nd"

Diminuendo "line.staff.hairpin.diminuendo" 2nd ending (closed) "line.system.repeat.2nd.closed"

Bracketed
diminuendo

"line.staff.hairpin.diminuendo.bracketed"
3rd ending

"line.system.repeat.3rd"

Dashed
diminuendo

"line.staff.hairpin.diminuendo.dashed" Repeat ending
(closed)

"line.system.repeat.closed"

Dotted
diminuendo

"line.staff.hairpin.diminuendo.dotted" Repeat ending
(open)

"line.system.repeat.open"

Diminuendo to
silence

"line.staff.hairpin.diminuendo.tosilence"
Accel.

"line.system.tempo.accel"

Guitar artificial
harmonic

"line.staff.harmonic.artificial" Accel.
(italic)

"line.system.tempo.accel.italic"

Guitar harp
harmonic

"line.staff.harmonic.harp" Accel.
(italic, text only)

"line.system.tempo.accel.italic.textonly"

Guitar pinch
harmonic

"line.staff.harmonic.pinch"
Molto accel.

"line.system.tempo.accel.molto"

Guitar touch
harmonic

"line.staff.harmonic.touch" Molto accel.
(text only)

"line.system.tempo.accel.molto.textonly"

Guitar harmonics "line.staff.harmonics" Poco accel. "line.system.tempo.accel.poco"

Hauptstimme
"line.staff.hauptstimme" Poco accel.

(text only)
"line.system.tempo.accel.poco.textonly"

Guitar let ring "line.staff.letring" Accel. (text only) "line.system.tempo.accel.textonly"

Lyric line
"line.staff.lyric" Tempo change

(arrow right)
"line.system.tempo.arrowright"

Guitar palm mute "line.staff.mute.palm" Rall. "line.system.tempo.rall"

Nebenstimme "line.staff.nebenstimme" Rall. (italic) "line.system.tempo.rall.italic"

2 octaves down
"line.staff.octava.minus15" Rall.

(italic, text only)
"line.system.tempo.rall.italic.textonly"
 Global Constants 109

Clef Styles
Here is a list of all the clef style identifiers that are guaranteed to be present in any score in Sibelius, for use with the Stave.AddClef
method. For each style we first give the English name of the style, and then the identifier.

Instrument Types
Here is a list of all the instrument type identifiers that are guaranteed to be present in any score in Sibelius. For each style we first give
the English name of the style and then the identifier. Note that only the tablature stave types can be used with guitar frames; the rest are
included for completeness.

Octave down "line.staff.octava.minus8" Molto rall. "line.system.tempo.rall.molto"

2 octaves up
"line.staff.octava.plus15" Molto rall.

(text only)
"line.system.tempo.rall.molto.textonly"

Octave up "line.staff.octava.plus8" Poco rall. "line.system.tempo.rall.poco"

Pedal "line.staff.pedal" Poco rall. (text only) "line.system.tempo.rall.poco.textonly"

Pedal lift "line.staff.pedal.lift" Rall. (text only) "line.system.tempo.rall.textonly"

Pedal lift again "line.staff.pedal.lift.again" Rit. "line.system.tempo.rit"

Pedal lift finally "line.staff.pedal.lift.finally" Rit. (italic) "line.system.tempo.rit.italic"

Pedal (no line) "line.staff.pedal.noline" Rit. (italic, text only) "line.system.tempo.rit.italic.textonly"

Guitar pick scrape "line.staff.pick.scrape" Molto rit. "line.system.tempo.rit.molto"

Line "line.staff.plain" Molto rit. (text only) "line.system.tempo.rit.molto.textonly"

Portamento "line.staff.port.straight" Poco rit. "line.system.tempo.rit.poco"

Guitar rake "line.staff.rake" Poco rit. (text only) "line.system.tempo.rit.poco.textonly"

Guitar slide "line.staff.slide" Rit. (text only) "line.system.tempo.rit.textonly"

Slur below "line.staff.slur.down"

Alto "clef.alto" Small tab "clef.tab.small"

Baritone C "clef.baritone.c" Small tab (taller) "clef.tab.small.taller"

Baritone F "clef.baritone.f" Tab (taller) "clef.tab.taller"

Bass "clef.bass" Tenor "clef.tenor"

Bass down 8 "clef.bass.down.8" Tenor down 8 "clef.tenor.down.8"

Bass up 15 "clef.bass.up.15" Treble "clef.treble"

Bass up 8 "clef.bass.up.8" Treble down 8 "clef.treble.down.8"

Null "clef.null" Treble (down 8) "clef.treble.down.8.bracketed"

Percussion "clef.percussion" Treble down 8 (old) "clef.treble.down.8.old"

Percussion 2 "clef.percussion_2" Treble up 15 "clef.treble.up.15"

Soprano "clef.soprano" Treble up 8 "clef.treble.up.8"

Mezzo-soprano "clef.soprano.mezzo" French violin "clef.violin.french"

Tab "clef.tab" Sub-bass F "clef.sub-bass.f"
 Global Constants 110

Alp-Horn in F instrument.brass.alp-horn.f

Alp-Horn in G instrument.brass.alp-horn.g

Baritone Bugle in G instrument.brass.bugle.baritone.g

Contrabass Bugle in G instrument.brass.bugle.contrabass.g

Euphonium Bugle in G instrument.brass.bugle.euphonium.g

Mellophone Bugle in G instrument.brass.bugle.mellophone.g

Soprano Bugle in G instrument.brass.bugle.soprano.g

Cimbasso in Bb instrument.brass.cimbasso.bflat

Cimbasso in Eb instrument.brass.cimbasso.eflat

Cimbasso in F instrument.brass.cimbasso.f

Cornet in A instrument.brass.cornet.a

Cornet in Bb instrument.brass.cornet.bflat

Soprano Cornet in Eb instrument.brass.cornet.soprano.eflat

Euphonium in Bb [treble clef] instrument.brass.euphonium

Euphonium in Bb [bass clef, treble transp.] instrument.brass.euphonium.bassclef

Euphonium in C [bass clef] instrument.brass.euphonium.bassclef.bassclef

Euphonium in Bb [bass clef] instrument.brass.euphonium.bflat.bassclef.bassclef

Flugelhorn instrument.brass.flugelhorn

Horn in A [no key] instrument.brass.horn.a.nokeysig

Horn in Ab alto [no key] instrument.brass.horn.alto.aflat.nokeysig

Alto Horn in Eb instrument.brass.horn.alto.eflat

Alto Horn in F instrument.brass.horn.alto.f

Horn in B [no key] instrument.brass.horn.b.nokeysig

Baritone in Bb [treble clef] instrument.brass.horn.baritone

Baritone in C [treble clef] instrument.brass.horn.baritone.2

Baritone in Bb [bass clef, treble transp.] instrument.brass.horn.baritone.bassclef

Baritone in C [bass clef] instrument.brass.horn.baritone.bassclef.bassclef

Bass in Bb instrument.brass.horn.bass.bflat

Bass in Bb [bass clef, treble transp.] instrument.brass.horn.bass.bflat.bassclef

Bass in C instrument.brass.horn.bass.c

Bass in Eb instrument.brass.horn.bass.eflat

Bass in Eb [bass clef, treble transp.] instrument.brass.horn.bass.eflat.bassclef

A Basso Horn [no key] instrument.brass.horn.basso.a.nokeysig

Bb Basso Horn [no key] instrument.brass.horn.basso.bflat.nokeysig

C Basso Horn [no key] instrument.brass.horn.basso.c.nokeysig

Horn in Bb [no key] instrument.brass.horn.bflat.nokeysig
 Global Constants 111

Horn in C [no key] instrument.brass.horn.c.nokeysig

Horn in D [no key] instrument.brass.horn.d.nokeysig

Horn in Db [no key] instrument.brass.horn.dflat.nokeysig

Horn in E [no key] instrument.brass.horn.e.nokeysig

Horn in Eb instrument.brass.horn.eflat

Horn in Eb [no key] instrument.brass.horn.eflat.nokeysig

Horn in F instrument.brass.horn.f

Horn in F [bass clef] instrument.brass.horn.f.bassclef

Horn in F [no key] instrument.brass.horn.f.nokeysig

Horn in F# [no key] instrument.brass.horn.fsharp.nokeysig

Horn in G [no key] instrument.brass.horn.g.nokeysig

Tenor Horn instrument.brass.horn.tenor

Mellophone in Eb instrument.brass.mellophone.eflat

Mellophone in F instrument.brass.mellophone.f

Mellophonium in Eb instrument.brass.mellophonium.eflat

Mellophonium in F instrument.brass.mellophonium.f

Ophicleide instrument.brass.ophicleide

Brass instrument.brass.section

Serpent instrument.brass.serpent

Sousaphone in Bb instrument.brass.sousaphone.bflat

Sousaphone in Eb instrument.brass.sousaphone.eflat

Trombone instrument.brass.trombone

Alto Trombone instrument.brass.trombone.alto

Bass Trombone instrument.brass.trombone.bass

Trombone in Bb [bass clef, treble transp.] instrument.brass.trombone.bassclef.trebleclef

Contrabass Trombone instrument.brass.trombone.contrabass

Tenor Trombone instrument.brass.trombone.tenor

Trombone in Bb [treble clef] instrument.brass.trombone.trebleclef

Trumpet in A instrument.brass.trumpet.a

Trumpet in B [no key] instrument.brass.trumpet.b.nokeysig

Bass Trumpet in Bb instrument.brass.trumpet.bass.bflat

Bass Trumpet in Eb instrument.brass.trumpet.bass.eflat

Trumpet in Bb instrument.brass.trumpet.bflat

Trumpet in Bb [no key] instrument.brass.trumpet.bflat.nokeysig

Trumpet in C instrument.brass.trumpet.c

Trumpet in D instrument.brass.trumpet.d

Trumpet in Db instrument.brass.trumpet.dflat
 Global Constants 112

Trumpet in E [no key] instrument.brass.trumpet.e.nokeysig

Trumpet in Eb instrument.brass.trumpet.eflat

Trumpet in F instrument.brass.trumpet.f

Trumpet in G [no key] instrument.brass.trumpet.g.nokeysig

Piccolo Trumpet in A instrument.brass.trumpet.piccolo.a

Piccolo Trumpet in Bb instrument.brass.trumpet.piccolo.bflat

Tenor Trumpet in Eb instrument.brass.trumpet.tenor.eflat

Tuba instrument.brass.tuba

Tuba in F instrument.brass.tuba.f

Tenor Tuba (Wagner, in Bb) instrument.brass.tuba.tenor

Tenor Tuba [bass clef] instrument.brass.tuba.tenor.bassclef

Wagner Tuba in Bb instrument.brass.tuba.wagner.bflat

Wagner Tuba in F instrument.brass.tuba.wagner.f

Applause instrument.exotic.applause

Birdsong instrument.exotic.birdsong

Helicopter instrument.exotic.helicopter

Ondes Martenot instrument.exotic.ondes-martenot

Sampler instrument.exotic.sampler

Seashore instrument.exotic.seashore

Tape instrument.exotic.tape

Telephone instrument.exotic.telephone

Theremin instrument.exotic.theremin

Bajo [notation] instrument.fretted.bajo.5lines

Bajo, 6-string [tab] instrument.fretted.bajo.tab

Bajo, 4-string [tab] instrument.fretted.bajo.tab.4lines

Bajo, 5-string [tab] instrument.fretted.bajo.tab.5lines

Alto Balalaika [notation] instrument.fretted.balalaika.alto.5lines

Alto Balalaika [tab] instrument.fretted.balalaika.alto.tab

Bass Balalaika [notation] instrument.fretted.balalaika.bass.5lines

Bass Balalaika [tab] instrument.fretted.balalaika.bass.tab

Contrabass Balalaika [notation] instrument.fretted.balalaika.contrabass.5lines

Contrabass Balalaika [tab] instrument.fretted.balalaika.contrabass.tab

Prima Balalaika [notation] instrument.fretted.balalaika.prima.5lines

Prima Balalaika [tab] instrument.fretted.balalaika.prima.tab

Second Balalaika [notation] instrument.fretted.balalaika.second.5lines

Second Balalaika [tab] instrument.fretted.balalaika.second.tab

Bandola [notation] instrument.fretted.bandola.5lines
 Global Constants 113

Bandola [tab] instrument.fretted.bandola.tab

Bandolón [notation] instrument.fretted.bandolon.5lines

Bandolón [tab] instrument.fretted.bandolon.tab

Bandurria [notation] instrument.fretted.bandurria.5lines

Bandurria [tab] instrument.fretted.bandurria.tab

Banjo [notation] instrument.fretted.banjo.5lines

Banjo (aDADE tuning) [tab] instrument.fretted.banjo.aDADE.tab

Banjo (aEADE tuning) [tab] instrument.fretted.banjo.aEADE.tab

Banjo (gCGBD tuning) [tab] instrument.fretted.banjo.gCGBD.tab

Banjo (gCGCD tuning) [tab] instrument.fretted.banjo.gCGCD.tab

Banjo (gDF#AD tuning) [tab] instrument.fretted.banjo.gDFAD.tab

Banjo (gDGBD tuning) [tab] instrument.fretted.banjo.gDGBD.tab

Banjo (gDGCD tuning) [tab] instrument.fretted.banjo.gDGCD.tab

Tenor Banjo [notation] instrument.fretted.banjo.tenor.5lines

Tenor Banjo [tab] instrument.fretted.banjo.tenor.tab

Bordonúa [notation] instrument.fretted.bordonua.5lines

Bordonúa [tab] instrument.fretted.bordonua.tab

Cavaquinho [notation] instrument.fretted.cavaquinho.5lines

Cavaquinho [tab] instrument.fretted.cavaquinho.tab

Charango [notation] instrument.fretted.charango.5lines

Charango [tab] instrument.fretted.charango.tab

Cuatro [notation] instrument.fretted.cuatro.5lines

Cuatro, Puerto Rico [tab] instrument.fretted.cuatro.puerto-rico.tab

Cuatro, Venezuela [tab] instrument.fretted.cuatro.venezuela.tab

Resonator guitar [notation] instrument.fretted.guitar.resonator.5lines

Resonator Guitar, A6 tuning [tab] instrument.fretted.guitar.resonator.a6.tab

Resonator Guitar, B11 tuning [tab] instrument.fretted.guitar.resonator.b11.tab

Resonator Guitar, C#m tuning [tab] instrument.fretted.guitar.resonator.c#m.tab

Resonator Guitar, C6+A7 tuning [tab] instrument.fretted.guitar.resonator.c6-a7.tab

Resonator Guitar, C6 + high G tuning [tab] instrument.fretted.guitar.resonator.c6-highg.tab

Resonator Guitar, standard tuning [tab] instrument.fretted.guitar.resonator.c6.tab

Resonator Guitar, C#m7 tuning [tab] instrument.fretted.guitar.resonator.cm7.tab

Resonator Guitar, E13 Hawaiian tuning [tab] instrument.fretted.guitar.resonator.e13-hawaiian.tab

Resonator Guitar, E13 Western tuning [tab] instrument.fretted.guitar.resonator.e13-western.tab

Resonator Guitar, open A tuning [tab] instrument.fretted.guitar.resonator.open.A.tab

Resonator Guitar, open G tuning [tab] instrument.fretted.guitar.resonator.open.G.tab

Dulcimer instrument.fretted.dulcimer
 Global Constants 114

Dulcimer [notation] instrument.fretted.dulcimer.5lines

Dulcimer (DAA tuning) [tab] instrument.fretted.dulcimer.daa.tab

Dulcimer (DAD tuning) [tab] instrument.fretted.dulcimer.dad.tab

Gamba [notation] instrument.fretted.gamba.5lines

Gamba [tab] instrument.fretted.gamba.tab

12-string Acoustic Guitar [notation] instrument.fretted.guitar.12-string.5lines

12-string Acoustic Guitar, DADGAD tuning [tab] instrument.fretted.guitar.12-string.dadgad.tab

12-string Acoustic Guitar, double D tuning [tab] instrument.fretted.guitar.12-string.double-d.tab

12-string Acoustic Guitar, dropped D tuning [tab] instrument.fretted.guitar.12-string.dropped-d.tab

12-string Acoustic Guitar, open D tuning [tab] instrument.fretted.guitar.12-string.open-d.tab

12-string Acoustic Guitar, open E tuning [tab] instrument.fretted.guitar.12-string.open-e.tab

12-string Acoustic Guitar, open G tuning [tab] instrument.fretted.guitar.12-string.open-g.tab

12-string Acoustic Guitar, standard tuning (no rhythms)
[tab]

instrument.fretted.guitar.12-string.tab

12-string Acoustic Guitar, standard tuning [tab] instrument.fretted.guitar.12-string.tab.rhythms

Acoustic Guitar [notation] instrument.fretted.guitar.acoustic.5lines

Acoustic Guitar, DADGAD tuning [tab] instrument.fretted.guitar.acoustic.dadgad.tab

Acoustic Guitar, double D tuning [tab] instrument.fretted.guitar.acoustic.double-d.tab

Acoustic Guitar, dropped D tuning [tab] instrument.fretted.guitar.acoustic.dropped-d.tab

Acoustic Guitar, modal D tuning [tab] instrument.fretted.guitar.acoustic.modal-d.tab

Acoustic Guitar, Nashville tuning [tab] instrument.fretted.guitar.acoustic.nashville.tab

Acoustic Guitar, open A tuning [tab] instrument.fretted.guitar.acoustic.open-a.tab

Acoustic Guitar, open C tuning [tab] instrument.fretted.guitar.acoustic.open-c.tab

Acoustic Guitar, open D tuning [tab] instrument.fretted.guitar.acoustic.open-d.tab

Acoustic Guitar, open Dm cross-note tuning [tab] instrument.fretted.guitar.acoustic.open-dm.tab

Acoustic Guitar, open E tuning [tab] instrument.fretted.guitar.acoustic.open-e.tab

Acoustic Guitar, open G tuning [tab] instrument.fretted.guitar.acoustic.open-g.tab

Acoustic Guitar, standard tuning (no rhythms) [tab] instrument.fretted.guitar.acoustic.tab

Acoustic Guitar, standard tuning [tab] instrument.fretted.guitar.acoustic.tab.rhythms

4-string Bass Guitar [notation] instrument.fretted.guitar.bass.4-string.5lines

4-string Bass Guitar [tab] instrument.fretted.guitar.bass.4-string.tab

5-string Bass Guitar [notation] instrument.fretted.guitar.bass.5-string.5lines

5-string Bass Guitar [tab] instrument.fretted.guitar.bass.5-string.tab

Bass Guitar [notation] instrument.fretted.guitar.bass.5lines

6-string Bass Guitar [notation] instrument.fretted.guitar.bass.6-string.5lines

6-string Bass Guitar [tab] instrument.fretted.guitar.bass.6-string.tab

Acoustic Bass [notation] instrument.fretted.guitar.bass.acoustic.5lines
 Global Constants 115

Acoustic Bass [tab] instrument.fretted.guitar.bass.acoustic.tab

5-string Electric Bass [notation] instrument.fretted.guitar.bass.electric.5-string.5lines

5-string Electric Bass [tab] instrument.fretted.guitar.bass.electric.5-string.tab

Electric Bass [notation] instrument.fretted.guitar.bass.electric.5lines

6-string Electric Bass [notation] instrument.fretted.guitar.bass.electric.6-string.5lines

6-string Electric Bass [tab] instrument.fretted.guitar.bass.electric.6-string.tab

5-string Fretless Electric Bass instrument.fretted.guitar.bass.electric.fretless.5-string.5lines

5-string Fretless Electric Bass [tab] instrument.fretted.guitar.bass.electric.fretless.5-string.tab

Fretless Electric Bass [notation] instrument.fretted.guitar.bass.electric.fretless.5lines

6-string Fretless Electric Bass instrument.fretted.guitar.bass.electric.fretless.6-string.5lines

6-string Fretless Electric Bass [tab] instrument.fretted.guitar.bass.electric.fretless.6-string.tab

Fretless Electric Bass [tab] instrument.fretted.guitar.bass.electric.fretless.tab

Electric Bass [tab] instrument.fretted.guitar.bass.electric.tab

5-string Fretless Bass Guitar [notation] instrument.fretted.guitar.bass.fretless.5-string.5lines

5-string Fretless Bass Guitar [tab] instrument.fretted.guitar.bass.fretless.5-string.tab

Fretless Bass Guitar [notation] instrument.fretted.guitar.bass.fretless.5lines

6-string Fretless Bass Guitar [notation] instrument.fretted.guitar.bass.fretless.6-string.5lines

6-string Fretless Bass Guitar [tab] instrument.fretted.guitar.bass.fretless.6-string.tab

Fretless Bass Guitar [tab] instrument.fretted.guitar.bass.fretless.tab

Semi-Acoustic Bass [notation] instrument.fretted.guitar.bass.semi-acoustic.5lines

Semi-Acoustic Bass [tab] instrument.fretted.guitar.bass.semi-acoustic.tab

Bass Guitar [tab] instrument.fretted.guitar.bass.tab

Bass Guitar [tab, with rhythms] instrument.fretted.guitar.bass.tab.rhythms

Classical Guitar [notation] instrument.fretted.guitar.classical.5lines

Classical Guitar, DADGAD tuning [tab] instrument.fretted.guitar.classical.dadgad.tab

Classical Guitar, double D tuning [tab] instrument.fretted.guitar.classical.double-d.tab

Classical Guitar, dropped D tuning [tab] instrument.fretted.guitar.classical.dropped-d.tab

Classical Guitar, open D tuning [tab] instrument.fretted.guitar.classical.open-d.tab

Classical Guitar, open E tuning [tab] instrument.fretted.guitar.classical.open-e.tab

Classical Guitar, open G tuning [tab] instrument.fretted.guitar.classical.open-g.tab

Classical Guitar, standard tuning (no rhythms) [tab] instrument.fretted.guitar.classical.tab

Classical Guitar, standard tuning [tab] instrument.fretted.guitar.classical.tab.rhythms

Electric Guitar [notation] instrument.fretted.guitar.electric.5lines

7-string Electric Guitar, low A tuning [tab] instrument.fretted.guitar.electric.7-string.low-a.tab

7-string Electric Guitar, low B tuning [tab] instrument.fretted.guitar.electric.7-string.tab

Electric Guitar, DADGAD tuning [tab] instrument.fretted.guitar.electric.dadgad.tab

Electric Guitar, double D tuning [tab] instrument.fretted.guitar.electric.double-d.tab
 Global Constants 116

Electric Guitar, dropped D tuning [tab] instrument.fretted.guitar.electric.dropped-d.tab

Electric Guitar, open D tuning [tab] instrument.fretted.guitar.electric.open-d.tab

Electric Guitar, open E tuning [tab] instrument.fretted.guitar.electric.open-e.tab

Electric Guitar, open G tuning [tab] instrument.fretted.guitar.electric.open-g.tab

Electric Guitar, standard tuning (no rhythms) [tab] instrument.fretted.guitar.electric.tab

Electric Guitar, standard tuning [tab] instrument.fretted.guitar.electric.tab.rhythms

Kora instrument.fretted.guitar.kora

Semi-acoustic Guitar [notation] instrument.fretted.guitar.semi-acoustic.5lines

Semi-acoustic Guitar, DADGAD tuning [tab] instrument.fretted.guitar.semi-acoustic.dadgad.tab

Semi-acoustic Guitar, double D tuning [tab] instrument.fretted.guitar.semi-acoustic.double-d.tab

Semi-acoustic Guitar, dropped D tuning [tab] instrument.fretted.guitar.semi-acoustic.dropped-d.tab

Semi-acoustic Guitar, open D tuning [tab] instrument.fretted.guitar.semi-acoustic.open-d.tab

Semi-acoustic Guitar, open E tuning [tab] instrument.fretted.guitar.semi-acoustic.open-e.tab

Semi-acoustic Guitar, open G tuning [tab] instrument.fretted.guitar.semi-acoustic.open-g.tab

Semi-acoustic Guitar, standard tuning (no rhythms) [tab] instrument.fretted.guitar.semi-acoustic.tab

Semi-acoustic Guitar, standard tuning [tab] instrument.fretted.guitar.semi-acoustic.tab.rhythms

10-string Hawaiian Steel Guitar [tab] instrument.fretted.guitar.steel.hawaiian.10-string.tab

Hawaiian Steel Guitar [notation] instrument.fretted.guitar.steel.hawaiian.5lines

6-string Hawaiian Steel Guitar, standard tuning [tab] instrument.fretted.guitar.steel.hawaiian.6-string.tab

6-string Hawaiian Steel Guitar, alternate tuning [tab] instrument.fretted.guitar.steel.hawaiian.6-string.tab.alternative

6-string Hawaiian Steel Guitar, slack key
Bb Mauna Loa tuning [tab]

instrument.fretted.guitar.steel.hawaiian.6-string.tab.bflat.mauna.loa

6-string Hawaiian Steel Guitar, slack key
C Mauna Loa tuning [tab]

instrument.fretted.guitar.steel.hawaiian.6-string.tab.c.mauna.loa

6-string Hawaiian Steel Guitar, slack key
Wahine CGDGBD tuning [tab]

instrument.fretted.guitar.steel.hawaiian.6-string.tab.cgdgbd.wahine

6-string Hawaiian Steel Guitar, slack key
Wahine CGDGBE tuning [tab]

instrument.fretted.guitar.steel.hawaiian.6-string.tab.cgdgbe.wahine

6-string Hawaiian Steel Guitar, slack key
Wahine DGDF#BD tuning [tab]

instrument.fretted.guitar.steel.hawaiian.6-string.tab.dgdfbd.wahine

6-string Hawaiian Steel Guitar, slack key
G Mauna Loa tuning [tab]

instrument.fretted.guitar.steel.hawaiian.6-string.tab.g.mauna.loa

6-string Hawaiian Steel Guitar, slack key
G Taro Patch tuning [tab]

instrument.fretted.guitar.steel.hawaiian.6-string.tab.g.taro.patch

6-string Hawaiian Steel Guitar, slack key
Wahine GCDGBE tuning [tab]

instrument.fretted.guitar.steel.hawaiian.6-string.tab.gcdgbe.wahine

8-string Hawaiian Steel Guitar [tab] instrument.fretted.guitar.steel.hawaiian.8-string.tab

8-string Hawaiian Steel Guitar, alternate tuning [tab] instrument.fretted.guitar.steel.hawaiian.8-string.tab.alternative

Hawaiian Steel Guitar [tab] instrument.fretted.guitar.steel.hawaiian.tab

Pedal Steel Guitar [notation] instrument.fretted.guitar.steel.pedal.5lines
 Global Constants 117

Pedal Steel Guitar [tab] instrument.fretted.guitar.steel.pedal.tab

Guitarra [notation] instrument.fretted.guitarra.5lines

Guitarra, Coimbra [tab] instrument.fretted.guitarra.coimbra.tab

Guitarra, Lisboa [tab] instrument.fretted.guitarra.lisboa.tab

Guitarra, Portuguesa [tab] instrument.fretted.guitarra.portuguesa.tab

Guitarrón [notation] instrument.fretted.guitarron.5lines

Guitarrón [tab] instrument.fretted.guitarron.tab

Laúd [notation] instrument.fretted.laud.5lines

Laúd [tab] instrument.fretted.laud.tab

Tenor Lute [notation] instrument.fretted.lute.5lines

Bass Lute [notation] instrument.fretted.lute.bass-d.french.english.5lines

Bass Lute, D tuning, French/English [tab] instrument.fretted.lute.bass-d.french.english.tab

Bass Lute, D tuning, Italian [tab] instrument.fretted.lute.bass-d.italian.tab

Bass Lute, D tuning, Spanish [tab] instrument.fretted.lute.bass-d.spanish.tab

Tenor Lute, G tuning, Italian [tab] instrument.fretted.lute.italian.tab

Tenor Lute, G tuning, Spanish [tab] instrument.fretted.lute.spanish.tab

Tenor Lute, G tuning, French/English [tab] instrument.fretted.lute.tab

Tenor Lute, A tuning, French/English [tab] instrument.fretted.lute.tenor-a.french.english.tab

Tenor Lute, A tuning, Italian [tab] instrument.fretted.lute.tenor-a.italian.tab

Tenor Lute, A tuning, Spanish [tab] instrument.fretted.lute.tenor-a.spanish.tab

Treble Lute [notation] instrument.fretted.lute.treble-d.french.english.5lines

Treble Lute, D tuning, French/English [tab] instrument.fretted.lute.treble-d.french.english.tab

Treble Lute, D tuning, Italian [tab] instrument.fretted.lute.treble-d.italian.tab

Treble Lute, D tuning, Spanish [tab] instrument.fretted.lute.treble-d.spanish.tab

Mandolin [notation] instrument.fretted.mandolin.5lines

Mandolin [tab] instrument.fretted.mandolin.tab

Oud [notation] instrument.fretted.oud.5lines

Oud [tab] instrument.fretted.oud.tab

Qanoon instrument.fretted.qanoon.5lines

Requinto [notation] instrument.fretted.requinto.5lines

Requinto [tab] instrument.fretted.requinto.tab

Santoor instrument.fretted.santoor.5lines

Sitar [notation] instrument.fretted.sitar.5lines

Sitar (Ravi Shankar) [tab] instrument.fretted.sitar.ravi-shankkar.tab

Sitar (Vilayat Khan) [tab] instrument.fretted.sitar.vilayat-khan.tab

Tambura (Female) [notation] instrument.fretted.tambura.female

Tambura (Male) [notation] instrument.fretted.tambura.male
 Global Constants 118

Tiple [notation] instrument.fretted.tiple.5lines

Tiple, Argentina [tab] instrument.fretted.tiple.argentina.tab

Tiple, Colombia ADF#B tuning [tab] instrument.fretted.tiple.colombia.tab.adfb

Tiple, Colombia DGBE tuning [tab] instrument.fretted.tiple.colombia.tab.dgbe

Tiple, Cuba [tab] instrument.fretted.tiple.cuba.tab

Tiple, Peru [tab] instrument.fretted.tiple.peru.tab

Tiple, Santo Domingo [tab] instrument.fretted.tiple.santo.domingo.tab

Tiple, Uruguay [tab] instrument.fretted.tiple.uruguay.tab

Tres [notation] instrument.fretted.tres.5lines

Tres, GCE tuning [tab] instrument.fretted.tres.tab

Tres, ADF# tuning [tab] instrument.fretted.tres.tab.adf

Tres, GBE tuning [tab] instrument.fretted.tres.tab.gbe

Ukulele [notation] instrument.fretted.ukulele.5lines

Ukulele [tab] instrument.fretted.ukulele.tab

Vihuela [notation] instrument.fretted.vihuela.5lines

Vihuela [tab] instrument.fretted.vihuela.tab

Zither instrument.fretted.zither

Keyboard instrument.keyboard

Accordion instrument.keyboard.accordion

Bandoneon instrument.keyboard.bandoneon

Celesta instrument.keyboard.celesta

Clavichord instrument.keyboard.clavichord

Harmonium instrument.keyboard.harmonium

Harpsichord instrument.keyboard.harpsichord

Keyboards instrument.keyboard.keyboards

Tape Sampler Keyboard [Brass] instrument.keyboard.tape sampler.brass

Tape Sampler Keyboard [Choir] instrument.keyboard.tape sampler.choir

Tape Sampler Keyboard [Flute] instrument.keyboard.tape sampler.flute

Tape Sampler Keyboard [Strings] instrument.keyboard.tape sampler

Melodeon instrument.keyboard.melodeon

Electric Organ instrument.keyboard.organ.electric

Organ [manuals] instrument.keyboard.organ.manuals

Manual [solo organ manuals] instrument.keyboard.organ.manuals.solo

Ped. [Organ pedals] instrument.keyboard.organ.pedals

Pedal [solo organ pedals] instrument.keyboard.organ.pedals.solo

Piano instrument.keyboard.piano

Electric Piano instrument.keyboard.piano.electric
 Global Constants 119

Electric Clavichord instrument.keyboard.piano.electric.clavichord

Electric Stage Piano instrument.keyboard.piano.electric.stage

Overdriven Electric Piano instrument.keyboard.piano.electric.overdriven

Honky-tonk Piano instrument.keyboard.piano.honky-tonk

Synthesizer instrument.keyboard.synthesizer

Unnamed (2 lines) instrument.other.2lines

Unnamed (3 lines) instrument.other.3lines

Unnamed (4 lines) instrument.other.4lines

Unnamed (bass staff) instrument.other.bassclef

No instrument (barlines shown) instrument.other.none.barlines

No instrument (bar rests shown) instrument.other.none.barrests

No instrument (hidden) instrument.other.none.hidden

Solo instrument.other.solo.real

Unnamed (treble staff) instrument.other.trebleclef

Almglocken instrument.pitchedpercussion.almglocken

Antique Cymbals instrument.pitchedpercussion.antiquecymbals

Chimes instrument.pitchedpercussion.bells.chimes

Chimes [no key] instrument.pitchedpercussion.bells.chimes.nokeysig

Bell lyre [marching band] instrument.pitchedpercussion.bells.marching

Orchestral Bells instrument.pitchedpercussion.bells.orchestral

Tubular Bells instrument.pitchedpercussion.bells.tubular

Cimbalom instrument.pitchedpercussion.cimbalom

Crotales instrument.pitchedpercussion.crotales

Steel Drums instrument.pitchedpercussion.drums.steel

Steel Drums [bass clef, treble transp.] instrument.pitchedpercussion.drums.steel.bassclef

Gamelan Kengong instrument.pitchedpercussion.gamelan.kengong

Gamelan Slentam instrument.pitchedpercussion.gamelan.slentam

Glockenspiel instrument.pitchedpercussion.glockenspiel

Alto Glockenspiel instrument.pitchedpercussion.glockenspiel.alto

Soprano Glockenspiel instrument.pitchedpercussion.glockenspiel.soprano

Handbells instrument.pitchedpercussion.handbells

Harp instrument.pitchedpercussion.harp

Lever Harp instrument.pitchedpercussion.harp.lever

Kalimba instrument.pitchedpercussion.kalimba

Marimba [grand staff] instrument.pitchedpercussion.marimba

Marimba [treble staff] instrument.pitchedpercussion.marimba.trebleclef

Alto Metallophone instrument.pitchedpercussion.metallophone.alto
 Global Constants 120

Bass Metallophone instrument.pitchedpercussion.metallophone.bass

Soprano Metallophone instrument.pitchedpercussion.metallophone.soprano

Roto-toms instrument.pitchedpercussion.roto-toms

Temple Blocks instrument.pitchedpercussion.templeblocks

Timpani [with key] instrument.pitchedpercussion.timpani

Timpani [no key] instrument.pitchedpercussion.timpani.nokeysig

Vibraphone instrument.pitchedpercussion.vibraphone

Wood Blocks [5 lines] instrument.pitchedpercussion.woodblocks

Xylophone instrument.pitchedpercussion.xylophone

Alto Xylophone instrument.pitchedpercussion.xylophone.alto

Bass Xylophone instrument.pitchedpercussion.xylophone.bass

Contra Bass Bar instrument.pitchedpercussion.xylophone.contrabass.bar

Gyil instrument.pitchedpercussion.xylophone.gyil

Soprano Xylophone instrument.pitchedpercussion.xylophone.soprano

Xylorimba instrument.pitchedpercussion.xylorimba

Alto instrument.singers.alto

Solo Alto instrument.singers.alto.solo

Altus instrument.singers.altus

Baritone instrument.singers.baritone

Solo Baritone instrument.singers.baritone.solo

Bass instrument.singers.bass

Solo Bass instrument.singers.bass.solo

Bassus instrument.singers.bassus

Cantus instrument.singers.cantus

Choir instrument.singers.choir

Contralto instrument.singers.contralto

Countertenor instrument.singers.counter-tenor

Mean instrument.singers.mean

Mezzo-soprano instrument.singers.mezzo-soprano

Quintus instrument.singers.quintus

Secundus instrument.singers.secundus

Soprano instrument.singers.soprano

Solo Soprano instrument.singers.soprano.solo

Tenor instrument.singers.tenor

Solo Tenor instrument.singers.tenor.solo

Treble instrument.singers.treble

Solo Treble instrument.singers.treble.solo
 Global Constants 121

Voice instrument.singers.voice

Voice [male] instrument.singers.voice.male

Contrabass instrument.strings.contrabass

Bass [Double] instrument.strings.contrabass.bass

Double Bass instrument.strings.contrabass.double-bass

Solo Contrabass instrument.strings.contrabass.solo

String Bass instrument.strings.contrabass.string

Upright Bass instrument.strings.contrabass.upright

Hurdy-gurdy instrument.strings.hurdy-gurdy

Sarangi instrument.strings.sarangi

Strings instrument.strings.section

Strings [reduction] instrument.strings.section.reduction

Bass Viol instrument.strings.viol.bass

Tenor Viol instrument.strings.viol.tenor

Treble Viol instrument.strings.viol.treble

Viola instrument.strings.viola

Solo Viola instrument.strings.viola.solo

Violin 1 instrument.strings.violin.1

Violin 2 instrument.strings.violin.2

Violin I instrument.strings.violin.I

Violin II instrument.strings.violin.ii

Solo Violin instrument.strings.violin.solo

Violoncello instrument.strings.violoncello

Solo Violoncello instrument.strings.violoncello.solo

Anvil instrument.unpitched.anvil

Cha-cha bell [1 line] instrument.unpitched.bells.cha-cha

Mambo bell [1 line] instrument.unpitched.bells.mambo

Sleigh Bells instrument.unpitched.bells.sleigh

Brake Drum [1 line] instrument.unpitched.brake-drum.1line

Cabasa [1 line] instrument.unpitched.cabasa

Cabasa [2 lines] instrument.unpitched.cabasa.2lines

Castanets instrument.unpitched.castanets

Shaker, Caxixi [1 line] instrument.unpitched.caxixi.1line

Claves [1 line] instrument.unpitched.claves

Shaker, Cocoa Bean Rattle [1 line] instrument.unpitched.cocoa bean.1line

Finger Cymbals [1 line] instrument.unpitched.cymbals.finger.1line

Percussion [1 line] instrument.unpitched.drums.1line
 Global Constants 122

Percussion [2 lines] instrument.unpitched.drums.2lines

Berimbau instrument.unpitched.drums.2lines.berimbau

Percussion [3 lines] instrument.unpitched.drums.3lines

Percussion [4 lines] instrument.unpitched.drums.4lines

Percussion [5 lines] instrument.unpitched.drums.5lines

Agogos [2 lines] instrument.unpitched.drums.agogos

Bass Drum instrument.unpitched.drums.bass

Bass Drum [5 lines] instrument.unpitched.drums.bass.5lines

Marching Bass Drum [3 lines] instrument.unpitched.drums.bass.marching.3lines

Marching Bass Drum [5 lines] instrument.unpitched.drums.bass.marching.5lines

Itótele [Batá Drum] instrument.unpitched.drums.bata.itotele

Iyá [Batá Drum] instrument.unpitched.drums.bata.iya

Okónkolo [Batá Drum] instrument.unpitched.drums.bata.okonkolo

Bongos [2 lines] instrument.unpitched.drums.bongos

Bongo Bell [High] instrument.unpitched.drums.bongos.bell.high

Bongo Bell [Low] instrument.unpitched.drums.bongos.bell.low

Box instrument.unpitched.drums.box.3lines

Cajon [2 lines] instrument.unpitched.drums.cajon

Congas [2 lines] instrument.unpitched.drums.congas

Congas [1 line] instrument.unpitched.drums.congas.1line

Congas [3 lines] instrument.unpitched.drums.congas.3lines

Congas [4 lines] instrument.unpitched.drums.congas.4lines

Cuíca [3 lines] instrument.unpitched.drums.cuica.3lines

Cymbals instrument.unpitched.drums.cymbal

Marching Cymbals [5 lines] instrument.unpitched.drums.cymbals.marching.5lines

Djembe [3 lines] instrument.unpitched.drums.djembe.3lines

Drum Set (Rock) instrument.unpitched.drums.drumset

Drum Set (Alternative) instrument.unpitched.drums.drumset.alternative

Drum Set (Brushes) instrument.unpitched.drums.drumset.brushes

Drum Set (Dance) instrument.unpitched.drums.drumset.dance

Drum Set (Disco) instrument.unpitched.drums.drumset.disco

Drum Set (Electronica) instrument.unpitched.drums.drumset.electronic

Drum Set (Fusion) instrument.unpitched.drums.drumset.fusion

Drum Set (Garage) instrument.unpitched.drums.drumset.garage

Drum Set (Hip-hop) instrument.unpitched.drums.drumset.hip-hop

Drum Set (Industrial) instrument.unpitched.drums.drumset.industrial

Drum Set (Jazz) instrument.unpitched.drums.drumset.jazz
 Global Constants 123

Drum Set (Lo-Fi) instrument.unpitched.drums.drumset.lo-fi

Drum Set (Metal) instrument.unpitched.drums.drumset.metal

Drum Set (Motown) instrument.unpitched.drums.drumset.motown

Drum Set (New Age) instrument.unpitched.drums.drumset.new age

Drum Set (Pop) instrument.unpitched.drums.drumset.pop

Drum Set (Reggae) instrument.unpitched.drums.drumset.reggae

Drum Set (Stadium Rock) instrument.unpitched.drums.drumset.rock.stadium

Drum Set (Rods) instrument.unpitched.drums.drumset.rods

Drum Set (Drum Machine) instrument.unpitched.drums.drumset.tr-808

Dumbek [3 lines] instrument.unpitched.drums.dumbek.3lines

Kidi [Ewe Drum] instrument.unpitched.drums.ewe.kidi

Sogo [Ewe Drum] instrument.unpitched.drums.ewe.sogo

Gankokwe (Bell) instrument.unpitched.drums.gankokwe

Jam Blocks [2 lines] instrument.unpitched.drums.jamblocks

Jawbone [1 line] instrument.unpitched.drums.jawbone.1line

Pandeiro [2 lines] instrument.unpitched.drums.pandeiro

Rain Stick (High) [1 line] instrument.unpitched.drums.rainstick.high.1line

Rain Stick (Low) [1 line] instrument.unpitched.drums.rainstick.low.1line

Egg Shaker (High) [1 line] instrument.unpitched.drums.shaker.high.1line

Egg Shaker (Low) [1 line] instrument.unpitched.drums.shaker.low.1line

Egg Shaker (Medium) [1 line] instrument.unpitched.drums.shaker.medium.1line

Side Drum instrument.unpitched.drums.side

Snare Drum instrument.unpitched.drums.snare

Marching Snare Drums [5 lines] instrument.unpitched.drums.snare.5lines

Surdo [2 lines] instrument.unpitched.drums.surdo

Tabla instrument.unpitched.drums.table

Taiko Drum instrument.unpitched.drums.taiko

Tenor Drum instrument.unpitched.drums.tenor

Marching Tenor Drums [5 lines] instrument.unpitched.drums.tenor.marching

Quads [5 lines] instrument.unpitched.drums.tenor.marching.quads

Tom-toms [5 lines] instrument.unpitched.drums.tom-toms

Tom-toms [4 lines] instrument.unpitched.drums.tom-toms.4lines

Udu instrument.unpitched.drums.udu

Shaker, Egg Shaker [1 line] instrument.unpitched.egg shaker.1line

Finger Click [1 line] instrument.unpitched.fingerclick

Gamelan Gong Ageng (High) [1 line] instrument.unpitched.gamelan.gong-ageng.high

Gamelan Gong Ageng (Low) [1 line] instrument.unpitched.gamelan.gong-ageng.low
 Global Constants 124

Gamelan Kempyang and Ketuk [2 lines] instrument.unpitched.gamelan.kempyang-ketuk

Gamelan Khendang Ageng [1 line] instrument.unpitched.gamelan.khendang-ageng

Gamelan Khendang Ciblon [1 line] instrument.unpitched.gamelan.khendang-ciblon

Large Gong [1 line] instrument.unpitched.gong.large.1line

Medium Gong [1 line] instrument.unpitched.gong.medium.1line

Gourd [1 line] instrument.unpitched.gourd

Guira [1 line] instrument.unpitched.guira

Guiro (High) [1 line] instrument.unpitched.guiro.high

Guiro (Medium) [1 line] instrument.unpitched.guiro.medium

Handclap [1 line] instrument.unpitched.handclap

Shaker, Kayamba [1 line] instrument.unpitched.kayamba.1line

Maracas instrument.unpitched.maracas

Shaker, Gourd Maracas [1 line] instrument.unpitched.maracas.gourd.1line

Maracas [High] instrument.unpitched.maracas.high

Maracas [Medium] instrument.unpitched.maracas.medium

Mark tree [1 line] instrument.unpitched.marktree

Shaker, Nsak Rattle [1 line] instrument.unpitched.nsak.1line

Finger Snaps instrument.unpitched.orff.fingersnaps

Hand Claps instrument.unpitched.orff.handclaps

Patsch instrument.unpitched.orff.patsch

Stamp instrument.unpitched.orff.stamp

Salsa bell [1 line] instrument.unpitched.salsa.bell

Shaker [1 line] instrument.unpitched.shaker

Shaker, Shekere [1 line] instrument.unpitched.shekere.1line

Tam-tam instrument.unpitched.tam-tam

Tambourine instrument.unpitched.tambourine

Timbales [2 lines] instrument.unpitched.timbales.2lines

Timbales [5 lines] instrument.unpitched.timbales.5lines

Triangle instrument.unpitched.triangle

Shaker, Wasembe Rattle (High) [1 line] instrument.unpitched.wasembe.high.1line

Shaker, Wasembe Rattle (Low) [1 line] instrument.unpitched.wasembe.low.1line

Shaker, Wasembe Rattle (Medium) [1 line] instrument.unpitched.wasembe.medium.1line

Whip instrument.unpitched.whip

Whistle instrument.unpitched.whistle

Wind Chimes [1 line] instrument.unpitched.wind-chimes.1line

Wood Block [1 line] instrument.unpitched.woodblock.1line

Bagpipes instrument.wind.bagpipe
 Global Constants 125

Basset Horn instrument.wind.basset-horn

Bassoon instrument.wind.bassoon

Contrabassoon instrument.wind.bassoon.contrabassoon

Quart Bassoon instrument.wind.bassoon.quart

Quint Bassoon instrument.wind.bassoon.quint

Clarinet in A instrument.wind.clarinet.a

Clarinet in Ab instrument.wind.clarinet.aflat

Alto Clarinet in Eb instrument.wind.clarinet.alto.eflat

Alto Clarinet in Eb [bass clef, treble transp.] instrument.wind.clarinet.alto.eflat.bassclef

Bass Clarinet in Bb instrument.wind.clarinet.bass.bflat

Bass Clarinet in Bb [score sounds 8vb] instrument.wind.clarinet.bass.bflat.8vb-score

Bass Clarinet in Bb [bass clef, treble transp.] instrument.wind.clarinet.bass.bflat.bassclef

Clarinet in Bb instrument.wind.clarinet.bflat

Clarinet in C instrument.wind.clarinet.c

Contra Alto Clarinet in Eb instrument.wind.clarinet.contra.alto.eflat

Contra Alto Clarinet in Eb [score sounds 8vb] instrument.wind.clarinet.contra.alto.eflat.8vb-score

Contra Alto Clarinet in Eb [bass clef, treble transp.] instrument.wind.clarinet.contra.alto.eflat.bassclef

Contrabass Clarinet in Bb instrument.wind.clarinet.contrabass.bflat

Contrabass Clarinet in Bb [score sounds 15mb] instrument.wind.clarinet.contrabass.bflat.15mb-score

Contrabass Clarinet in Bb [bass clef, treble transp.] instrument.wind.clarinet.contrabass.bflat.bassclef

Clarinet in D instrument.wind.clarinet.d

Clarinet in Eb instrument.wind.clarinet.eflat

Clarinet in G instrument.wind.clarinet.g

Cor Anglais instrument.wind.coranglais

Didgeridoo instrument.wind.didgeridoo

Duduk instrument.wind.duduk

English Horn instrument.wind.englishhorn

Flageolet instrument.wind.flageolet

Flute instrument.wind.flute

Alto Flute instrument.wind.flute.alto

Bansuri instrument.wind.flute.bansuri

Bass Flute instrument.wind.flute.bass

Eb Flute instrument.wind.flute.eflat

G Flute instrument.wind.flute.g

Harmonica instrument.wind.harmonica

Heckelphone instrument.wind.heckelphone

Mey instrument.wind.mey
 Global Constants 126

Nai instrument.wind.nai

Oboe instrument.wind.oboe

Baritone Oboe instrument.wind.oboe.baritone

Bass Oboe instrument.wind.oboe.bass

Oboe d'Amore instrument.wind.oboe.damore

Ocarina instrument.wind.ocarina

Panpipes instrument.wind.panpipes

Piccolo instrument.wind.piccolo

Military Piccolo in Db instrument.wind.piccolo.dflat

Alto Recorder instrument.wind.recorder.alto

Bass Recorder instrument.wind.recorder.bass

Great Bass Recorder instrument.wind.recorder.bass.great

Contrabass Recorder instrument.wind.recorder.contrabass

Descant Recorder instrument.wind.recorder.descant

Sopranino Recorder instrument.wind.recorder.sopranino

Soprano Recorder instrument.wind.recorder.soprano

Tenor Recorder instrument.wind.recorder.tenor

Treble Recorder instrument.wind.recorder.treble

Alto Saxophone instrument.wind.saxophone.alto

Baritone Saxophone instrument.wind.saxophone.baritone

Baritone Saxophone [score sounds 8vb] instrument.wind.saxophone.baritone.8vb-score

Baritone Saxophone [bass clef, treble transp.] instrument.wind.saxophone.baritone.bassclef

Bass Saxophone instrument.wind.saxophone.bass

Bass Saxophone [score sounds 15mb] instrument.wind.saxophone.bass.15mb-score

Bass Saxophone [bass clef, treble transp.] instrument.wind.saxophone.bass.bassclef

C Melody Saxophone instrument.wind.saxophone.c-melody

Contrabass (Tubax) Saxophone instrument.wind.saxophone.contrabass

Contrabass (Tubax) Saxophone [score sounds 15mb] instrument.wind.saxophone.contrabass.15mb-score

Contrabass (Tubax) Sax [bass clef, treble transp.] instrument.wind.saxophone.contrabass.bassclef

F Mezzo Soprano Saxophone instrument.wind.saxophone.mezz-soprano.f

Sopranino Saxophone instrument.wind.saxophone.sopranino

Piccolo Saxophone in Bb [Soprillo] instrument.wind.saxophone.sopranino.bflat

Soprano Saxophone instrument.wind.saxophone.soprano

C Soprano Saxophone instrument.wind.saxophone.soprano.c

Subcontrabass (Tubax) Saxophone instrument.wind.saxophone.subcontrabass

Subcontrabass (Tubax) Saxophone [score sounds 15mb] instrument.wind.saxophone.subcontrabass.15mb-score

Subcontrabass (Tubax) Sax [bass clef, treble transp.] instrument.wind.saxophone.subcontrabass.bassclef
 Global Constants 127

Beam Options
For the Beam variable of NoteRest objects.

Bracket Types
For the AddBracket() method of BracketList objects, and the BracketType variable of Bracket objects.

Breaks
These constants are used by the SetBreakType() method of Score objects.

These constants correspond to the menu entries in the Bars panel of the Properties window in the following way:

MiddleOfSystem Middle of system. The bar can only appear in the middle of a system, not at the end.

EndOfSystem No menu entry; created by Layout > Lock Format. The bar can only appear at the end of a mid-page system,
not the middle of a system or the end of a page.

MiddleOfPage Middle of page. The bar can appear anywhere except at the end of a page.

EndOfPage Page break. The bar can only appear at the end of a page.

NotEndOfSystem No menu entry. The bar can appear anywhere except the end of a mid-page system.

Tenor Saxophone instrument.wind.saxophone.tenor

Tenor Saxophone [score sounds 8vb] instrument.wind.saxophone.tenor.8vb-score

Tenor Saxophone [bass clef, treble transp.] instrument.wind.saxophone.tenor.bassclef

Woodwind instrument.wind.section

Shakuhachi instrument.wind.shakuhachi

Tin Whistle instrument.wind.whistle.tin

NoBeam 1

StartBeam 2

ContinueBeam 3

SingleBeam 4

BracketFull 0

BracketBrace 1

BracketSub 2

MiddleOfSystem 1

EndOfSystem 2

MiddleOfPage 3

EndOfPage 4

NotEndOfSystem 5

EndOfSystemOrPage 6

Default 7

SpecialPageBreak 8
 Global Constants 128

EndOfSystemOrPage System break. The bar can only appear at the end of a mid-page system or the end of a page.

Default No break. The bar can appear anywhere.

Note that in older versions of ManuScript the constant MiddleOfSystem was called NoBreak and the constant EndOfSystem was
called SystemBreak. These older names were confusing, because they implied a correlation with the similarly-named menu items in
the Properties window that was not accurate. The old names are still supported for old plug-ins, but should not be used for new plug-ins.
For consistency, the old constant PageBreak has also been renamed EndOfPage, even though this did correlate correctly with the
Properties window.

Accidentals
For the Accidental variable of Note objects.

Note Style Names
For the NoteStyle variable of Note objects; these correspond to the noteheads available from the Notes panel of the Properties
window in the manuscript papers that are supplied with Sibelius.

DoubleSharp 2

Sharp 1

Natural 0

Flat –1

DoubleFlat –2

QuarterSharp 0.5

ThreeQuarterSharp 1.5

QuarterFlat –0.5

ThreeQuarterFlat –1.5

NormalNoteStyle 0 BackSlashedNoteStyle 12

CrossNoteStyle 1 ArrowDownNoteStyle 13

DiamondNoteStyle 2 ArrowUpNoteStyle 14

BeatWithoutStemNoteStyle 3 InvertedTriangleNoteStyle 15

BeatNoteStyle 4 ShapedNote1NoteStyle 16

CrossOrDiamondNoteStyle 5 ShapedNote2NoteStyle 17

BlackAndWhiteDiamondNoteStyle 6 ShapedNote3NoteStyle 18

HeadlessNoteStyle 7 ShapedNote4StemUpNoteStyle 19

StemlessNoteStyle 8 ShapedNote4StemDownNoteStyle 23

SilentNoteStyle 9 ShapedNote5NoteStyle 20

CueNoteStyle 10 ShapedNote6NoteStyle 21

SlashedNoteStyle 11 ShapedNote7NoteStyle 22
 Global Constants 129

MuteMode Constants
These are the possible values of Stave.MuteMode:

Articulations
Used with Note.GetArticulation and Note.SetArticulation.

SyllableTypes for LyricItems
Used in LyricItem.

Accidental Styles
As used by Note.AccidentalStyle.

Muted 0

HalfMuted 1

NotMuted 2

Custom3Artic 15

TriPauseArtic 14

PauseArtic 13

SquarePauseArtic 12

Custom2Artic 11

DownBowArtic 10

UpBowArtic 9

PlusArtic 8

HarmonicArtic 7

MarcatoArtic 6

AccentArtic 5

TenutoArtic 4

WedgeArtic 3

StaccatissimoArtic 2

StaccatoArtic 1

Custom1Artic 0

MiddleOfWord 0

EndOfWord 1

NormalAcc "0"

HiddenAcc "1"

CautionaryAcc "2"

BracketedAcc "3"
 Global Constants 130

Time Signature Strings
These define the unicode characters used to draw common time and alla breve time signatures, so that you can recognize these by
comparison with TimeSignature.Text.

CommonTimeString

AllaBreveTimeString

Symbols
There are a lot of symbols in Sibelius. We’ve defined named constants for the indices of some of the most frequently used symbols,
which can be passed to Bar.AddSymbol. For other symbols, you can work out the required index by "counting along" in the
Create > Symbol dialog of Sibelius, or by using the method Score.SymbolIndex. To help with the "counting along," we’ve defined
a constant for the start of every group of symbols in the Create > Symbol dialog, and these are also given below. Then for example you
can access the 8va symbol as OctaveSymbols + 2.

Common Symbol Indices

SegnoSymbol "1"

CodaSymbol "2"

RepeatBeatSymbol "5"

RepeatBarSymbol "6"

RepeatTwoBarsSymbol "7"

TrillSymbol "32"

BracketedTrillSymbol "33"

MordentSymbol "36"

InvertedMordentSymbol "37"

TurnSymbol "38"

InvertedTurnSymbol "39"

ReversedTurnSymbol "40"

TripleMordentSymbol "41"

InvertedTripleMordentSymbol "42"

PedalSymbol "48"

PedalPSymbol "49"

PedalUpSymbol "50"

LiftPedalSymbol "51"

HeelOneSymbol "52"

HeelTwoSymbol "53"

ToeOneSymbol "54"

ToeTwoSymbol "55"

CommaSymbol "247"

TickSymbol "248"

CaesuraSymbol "249"

ThickCaesuraSymbol "250"
 Global Constants 131

Special Page Break Types

Indices at the Start of Each Group of Symbols

RepeatSymbols "0"

GeneralSymbols "16"

OrnamentSymbols "32"

KeyboardSymbols "48"

ChromaticPercussionSymbols "64"

DrumPercussionSymbols "80"

MetallicPercussionSymbols "96"

OtherPercussionSymbols "112"

BeaterPercussionSymbols "128"

PercussionTechniqueSymbols "160"

GuitarSymbols "176"

ArticulationSymbols "208"

AccidentalSymbols "256"

NoteSymbols "288"

NoteheadSymbols "320"

RestSymbols "368"

ConductorSymbols "400"

ClefSymbols "416"

OctaveSymbols "448"

BreakSymbols "464"

TechniqueSymbols "480"

AccordionSymbols "496"

HandbellSymbols "528"

MiscellaneousSymbols "544"

Symbol Size Constants

NormalSize "0"

CueSize "1"

GraceNoteSize "2"

CueGraceNoteSize "3"

NoPageBreak "0"

MusicRestartsAfterXPages "1"

MusicRestartsOnNextLeftPage "2"

MusicRestartsOnNextRightPage "3"
 Global Constants 132

Interval Types

InMultirest Values

Page Number Visibility Values

Page Number Format Values

IntervalDiatonic "–1"

Interval5xDiminished "0"

Interval4xDiminished "1"

Interval3xDiminished "2"

Interval2xDiminished "3"

IntervalDiminished "4"

IntervalMinor "4"

IntervalMajor "5"

IntervalPerfect "5"

IntervalAugmented "6"

Interval2xAugmented "7"

Interval3xAugmented "8"

Interval4xAugmented "9"

Interval5xAugmented "10"

NoMultirest "0"

StartsMultirest "1"

EndsMultirest "2"

MidMultirest "3"

PageNumberShowAll "0"

PageNumberHideFirst "1"

PageNumberHideAll "2"

PageNumberFormatNormal "0"

PageNumberFormatRomanUpper "1"

PageNumberFormatRomanLower "2"

PageNumberFormatLetterLower "3"
 Global Constants 133

Special Barlines

Bar Rest Type Values

GuitarScaleDiagram Type Values

SpecialBarlineStartRepeat "0"

SpecialBarlineEndRepeat "1"

SpecialBarlineDashed "2"

SpecialBarlineDouble "3"

SpecialBarlineFinal "4"

SpecialBarlineInvisible "5"

SpecialBarlineBetweenStaves "6"

SpecialBarlineNormal "7"

SpecialBarlineTick "8"

SpecialBarlineShort "9"

SpecialBarlineDotted "10"

SpecialBarlineTriple "11"

SpecialBarlineThick "12"

WholeBarRest "0"

BreveBarRest "1"

OneBarRepeat "2"

TwoBarRepeat "3"

FourBarRepeat "4"

ScaleTypeMajor "0"

ScaleTypeMinor "1"

ScaleTypeHarmonicMinor "2"

ScaleTypeMelodicMinor "3"

ScaleTypeDorian "4"

ScaleTypePhrygian "5"

ScaleTypeLydian "6"

ScaleTypeMixolydian "7"

ScaleTypeLocrian "8"

ScaleTypeWholeTone "9"

ScalrTypeDiminishedHalfWhole "10"

ScaleTypeDiminishedWholeHalf "11"

ScaleTypeAlteredDominant "12"

ScaleTypeLocrianSharp2 "13"
 Global Constants 134

FeatheredBeamType Values
For the FeatheredBeamType variable of NoteRest objects.

Units Values
For the DocumentSetup object.

Orientation Values
For the Orientation variable of DocumentSetup objects.

PageSize Values
For the PageSize variable of DocumentSetup objects.

ScaleTypeLydianFlat7 "14"

ScaleTypeMajorBebop "15"

ScaleTypeDominantBebop "16"

ScaleTypeLydianSharp5 "17"

ScaleTypePhrygianDominant "18"

ScaleTypeAugmentedArpeggio "19"

ScaleTypeMajor7thArpeggio "20"

ScaleType7thArpeggio "21"

ScaleTypeMin7Flat5Arpeggio "22"

ScaleTypeDiminished7thArpeggio "23"

ScaleTypeMajorPentatonic "24"

ScaleTypeMinorPentatonic "25"

ScaleTypeOther "26"

FeatheredBeamNone "0"

FeatheredBeamAccel "1"

FeatheredBeamRit "2"

DocumentSetupUnitsmm "0"

DocumentSetupUnitsInches "1"

DocumentSetupUnitsPoints "2"

OrientationPortrait "0"

OrientationLandscape "1"

PageSizeLetter "0"

PageSizeTabloid "1"

PageSizeA5 "2"

PageSizeB5 "3"
 Global Constants 135

MarginType Values
For the MarginType variable of DocumentSetup objects.

StaffScaleFactor Values
For the StaffScaleFactor variable of Staff objects.

Tuplets
These define the constants that can be passed as a style parameter to Bar.AddTuplet() and Tuplet.AddNestedTuplet().

These define the constants that can be passed as a bracket parameter:

PageSizeA4 "4"

PageSizeB4 "5"

PageSizeA3 "6"

PageSizeUSBand "7"

PageSizeStatement "8"

PageSizeHymn "9"

PageSizeOctavo "10"

PageSizeExecutive "11"

PageSizeQuarto "12"

PageSizeConcert "13"

PageSizeFolio "14"

PageSizeLegal "15"

PageSize9_5x12_5 "16"

PageSize10x13 "17"

PageSizeCustom "18"

PageMarginsSame "0"

PageMarginsMirrored "1"

PageMarginsDifferent "2"

NormalSize "0"

MediumSize "1"

SmallSize "2"

ExtraSmallSize "3"

TupletNoNumber "0"

TupletLeft "1"

TupletLeftRight "2"

TupletLeftRightNote "3"

TupletBracketOff "0"
 Global Constants 136

SingleTremolos
For the SingleTremolos variable of NoteRest objects, the constants are numbers in the range 0 to 7, representing the number of
tremolo beams on the stem of the note or chord. For a "z on stem" (for buzz rolls), use the value –1 or the constant ZOnStem.

DoubleTremolo Values
For the double tremolo style variables of EngravingRules objects.

BarNumberFrequencyCategory Values
For the BarNumberFrequencyCategory variable of EngravingRules objects.

Instrument Name Values
For the instrument name variables of EngravingRules objects.

Types of Objects in a Bar
The Type field for objects in a bar can return one of the following values:

Clef, SpecialBarline, TimeSignature, KeySignature

Line, ArpeggioLine, Bend, CrescendoLine, DiminuendoLine, GlissandoLine, OctavaLine, PedalLine,
RepeatTimeLine, Slur, Trill, Box, BeamLine, Tuplet, RitardLine, HighLight

LyricItem, Text, SystemTextItem, GuitarFrame, GuitarScaleDiagram, RehearsalMark, InstrumentChange

BarRest, NoteRest, Graphic, Comment, Bracket, BarNumber

SymbolItem, SystemSymbolItem

TupletBracketOn "1"

TupletBracketAuto "2"

DoubleTremolosTouchingStems "0"

DoubleTremolosBetweenStems "1"

DoubleTremolosOuterTremoloTouchingStems "2"

EverySystem "0"

NoBarNumbers "1"

EveryNthBar "2"

InstrumentNamesFull "0"

InstrumentNamesShort "1"

InstrumentNamesNone "2"
 Global Constants 137

Interpreter Options

TreatSingleCharacterAsString

When enabled, literals such as “1” will be considered as
strings, not characters. That has several consequences:
• When consisting of a single digit, these will have the value of
the digit, not the value of the ASCII character.
• In the case of non-digit values, like “a”, they will be converted
to 0, as documented elsewhere. (Not as 97 as was the case
before. If the ASCII value is required, one has to use the “Asc”
method explicitly.)
• Result of comparison like “ManuScript” = “M” will now be
false.

SupportHalfSemitonePitchValues

When enabled, floating-point values are accepted as “Pitch”
so that scripts can add and manipulate quarter-tone values.
Pitch is still specified and returned as a semitone, but 0.5
semitone is a quartertone. The same goes for Accidentals.
The following methods accept floating-point pitches:
• NoteRest.AddNote
• Bar.AddNote
• Stave.AddNote
The following methods return pitches or accidentals in float-
ing-point values:
• Note.Pitch
• Note.WrittenPitch
• Note.Accidental
• Note.WrittenAccidental
 Global Constants 138

Technical Support (USA)
Visit the Online Support Center
at www.avid.com/support
Product Information
For company and product information,
visit us on the web at www.avid.com

https://www.avid.com/learn-and-support
https://www.avid.com

	Contents
	Introduction
	Rationale
	Technical Support
	System Requirements and Compatibility Information
	Conventions Used in Sibelius Documentation
	How to Use this PDF Guide

	Resources
	Account Activation and Product Registration
	Support and Downloads
	Training and Education
	Products and Developers

	Sibelius ManuScript Language Tutorial
	Edit Plug-ins
	A Simple Plug-in
	Three Types of Information

	Editing the Code
	Where Plug-ins are Stored
	Line Breaks and Comments
	Variables
	Converting Between Numbers, Text, and Objects

	Loops
	“for” and “while”
	The if statement
	Arithmetic

	Objects
	Objects in Action

	Representation of a Score
	The System Staff
	Representation of Notes, Rests, Chords, and Other Musical Items

	The “for each” Loop
	Indirection, Sparse Arrays, and User Properties
	Indirection
	Sparse Arrays
	User Properties
	Dictionary
	Using User Properties as Global Variables
	Watch Out for Recursive Cycles!
	Other Things to Look Out For

	Dialog Editor
	Showing a Dialog in a Plug-In
	Creating or Editing a Dialog
	Dialog Properties
	Laying Out Controls
	Undo and Redo
	Testing the Dialog
	Saving Changes

	Set Creation Order
	Control Properties
	Combo Boxes and List Boxes
	Radio Buttons
	Static Text
	Buttons

	Debugging Plug-ins
	Undo
	Plug-in Trace Window
	Checking the Validity of Objects
	Stopping the Plug-in

	Storing and Retrieving Preferences
	How Does it Work?
	Initializing the Database
	Accessing Data
	Commands for Local Variables
	Miscellaneous
	Basic Example

	Reference
	Syntax
	Expressions
	Operators
	Condition Operators
	Arithmetic

	Object Reference
	Hierarchy of Objects
	All Objects
	Methods
	User Properties

	Accessibility
	Methods
	Variables

	AnnotationItem
	Methods
	Variables

	Bar
	Methods
	Variables

	Barline
	Methods
	Variables

	Barlines
	Methods
	Variables

	BarObject
	Methods
	Variables
	Deleting Multiple Objects from a Bar

	BarRest
	Methods
	Variables

	Bracket
	Methods
	Variables

	Brackets and Braces
	Methods
	Variables

	Clef
	Methods
	Variables

	Comment
	Methods
	Variables

	ComponentList
	Methods
	Variables

	Component
	Methods
	Variables

	DateTime
	Methods
	Variables

	Dictionary
	Methods
	Variables
	Converting Old-Style Hash Tables to Dictionaries

	DocumentSetup
	Methods
	Variables

	DynamicPartCollection
	Methods
	Variables

	DynamicPart
	Methods
	Variables

	EngravingRules
	Methods
	Variables

	File
	Methods
	Variables

	Folder
	Methods
	Variables

	GuitarFrame
	Methods
	Variables

	GuitarScaleDiagram
	Methods
	Variables

	HitPointList
	Methods
	Variables

	HitPoint
	Methods
	Variables

	InstrumentChange
	Methods
	Variables

	InstrumentTypeList
	Methods
	Variables

	InstrumentType
	Methods
	Variables

	KeySignature
	Methods
	Variables

	Line
	Methods
	Variables

	LyricItem
	Methods
	Variables

	NoteRest
	Methods
	Variables

	Note
	Methods
	Variables

	NoteSpacingRule
	Methods
	Variables

	PageNumberChange
	Methods
	Variables

	PluginList
	Variables

	Plugin
	Methods
	Variables

	RehearsalMark
	Methods
	Variables

	Score
	Methods
	Variables

	Selection
	Methods
	Variables
	Copying Multiple Selections from One Bar to Another

	Sibelius
	Methods
	Variables

	SoundInfo
	Methods
	Variables

	SparseArray
	Methods
	Variables
	Converting Old-style Arrays to New Sparse Arrays

	SpecialBarline
	Methods
	Variables

	Staff
	Methods
	Variables

	Syllabifier
	Methods
	Variables

	SymbolItem and SystemSymbolItem
	Methods
	Variables

	SystemObjectPositions
	Methods
	Variables

	SystemStaff, Staff, Selection, Bar and, all BarObject-derived Objects
	Variables

	SystemStaff
	Methods
	Variables

	Text and SystemTextItem
	Methods
	Variables

	TimeSignature
	Methods
	Variables

	TreeNode
	Methods
	Variables

	Tuplet
	Methods
	Variables

	Utils
	Methods

	VersionHistory
	Methods
	Variables

	Version
	Methods
	Variables

	VersionComment
	Methods
	Variables

	Command IDs
	Global Constants
	Global Constants
	Truth Values
	Measurements
	Positions and Durations
	Style Names
	Bar Number Formats
	Text Styles
	Line Styles
	Clef Styles
	Instrument Types
	Beam Options
	Bracket Types
	Breaks
	Accidentals
	Note Style Names
	MuteMode Constants
	Articulations
	SyllableTypes for LyricItems
	Accidental Styles
	Time Signature Strings
	Symbols
	Special Page Break Types
	Interval Types
	InMultirest Values
	Page Number Visibility Values
	Page Number Format Values
	Special Barlines
	Bar Rest Type Values
	GuitarScaleDiagram Type Values
	FeatheredBeamType Values
	Units Values
	Orientation Values
	PageSize Values
	MarginType Values
	StaffScaleFactor Values
	Tuplets
	SingleTremolos
	DoubleTremolo Values
	BarNumberFrequencyCategory Values
	Instrument Name Values
	Types of Objects in a Bar
	Interpreter Options

